A model of a radially symmetric cloud of self-attracting particles
Nadzieja, Tadeusz
Applicationes Mathematicae, Tome 23 (1995), p. 169-178 / Harvested from The Polish Digital Mathematics Library

We consider a parabolic equation which describes the gravitational interaction of particles. Existence of solutions and their convergence to stationary states are studied.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:219123
@article{bwmeta1.element.bwnjournal-article-zmv23i2p169bwm,
     author = {Tadeusz Nadzieja},
     title = {A model of a radially symmetric cloud of self-attracting particles},
     journal = {Applicationes Mathematicae},
     volume = {23},
     year = {1995},
     pages = {169-178},
     zbl = {0839.35110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i2p169bwm}
}
Nadzieja, Tadeusz. A model of a radially symmetric cloud of self-attracting particles. Applicationes Mathematicae, Tome 23 (1995) pp. 169-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i2p169bwm/

[000] [1] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, preprint 1994. | Zbl 0829.35044

[001] [2] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297-308. | Zbl 0832.35015

[002] [3] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, ibid. 66 (1993), 131-145. | Zbl 0818.35046

[003] [4] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. | Zbl 0817.35041

[004] [5] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622. | Zbl 0768.35025

[005] [6] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. | Zbl 0144.34903

[006] [7] E. Hopf, The partial differential equation u_t + uu_x=u_xx, Comm. Pure Appl. Math. 3 (1950), 201-230. | Zbl 0039.10403

[007] [8] A. Krzywicki and T. Nadzieja, Some results concerning the Poisson-Boltzmann equation, Zastos. Mat. 21 (1991), 265-272. | Zbl 0756.35029

[008] [9] A. Krzywicki and T. Nadzieja, A note on the Poisson-Boltzmann equation, ibid. 21 (1993), 591-595. | Zbl 0780.35033

[009] [10] G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992), 355-391. | Zbl 0774.76069