Computer-aided modeling and simulation of electrical circuits with α-stable noise
Weron, Aleksander
Applicationes Mathematicae, Tome 23 (1995), p. 83-93 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to demonstrate how the appropriate numerical, statistical and computer techniques can be successfully applied to the construction of approximate solutions of stochastic differential equations modeling some engineering systems subject to large disturbances. In particular, the evolution in time of densities of stochastic processes solving such problems is discussed.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:219118
@article{bwmeta1.element.bwnjournal-article-zmv23i1p83bwm,
     author = {Aleksander Weron},
     title = {Computer-aided modeling and simulation of electrical circuits with $\alpha$-stable noise},
     journal = {Applicationes Mathematicae},
     volume = {23},
     year = {1995},
     pages = {83-93},
     zbl = {0823.60048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i1p83bwm}
}
Weron, Aleksander. Computer-aided modeling and simulation of electrical circuits with α-stable noise. Applicationes Mathematicae, Tome 23 (1995) pp. 83-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i1p83bwm/

[000] J. Berger and B. Mandelbrot (1963), A new model for error clustering in telephone circuits, IBM J. Res. and Develop. 7, 224-236.

[001] L. M. Berliner (1992), Statistics, probability and chaos, Statist. Sci. 7, 69-90. | Zbl 0955.62520

[002] J. M. Chambers, C. L. Mallows and B. Stuck (1976), A method for simulating stable random variables, J. Amer. Statist. Assoc. 71, 340-344. | Zbl 0341.65003

[003] S. Chatterjee and M. R. Yilmaz (1992), Chaos, fractals and statistics, ibid. 7, 49-68. | Zbl 0955.37500

[004] L. Devroye (1987), A Course in Density Estimation, Birkhäuser, Boston. | Zbl 0617.62043

[005] L. Gajek and A. Lenic (1993), An approximate necessary condition for the optimal bandwidth selector in kernel density estimation, Applicationes Math. 22, 123-138. | Zbl 0789.62028

[006] C. W. Gardiner (1983), Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer, New York. | Zbl 0515.60002

[007] W. Härdle, P. Hall and J. S. Marron (1988), How far are automatically chosen regression smoothing parameters from their optimum? (with comments), J. Amer. Statist. Assoc. 74, 105-131. | Zbl 0644.62048

[008] A. Janicki (1995), Computer simulation of a nonlinear model for electrical circuits with α-stable noise, this volume, 95-105. | Zbl 0822.60051

[009] A. Janicki, Z. Michna and A. Weron (1994), Approximation of stochastic differential equations driven by α-stable Lévy motion, preprint. | Zbl 0879.60059

[010] A. Janicki and A. Weron (1994), Can one see α-stable variables and processes?, Statist. Sci. 9, 109-126. | Zbl 0955.60508

[011] A. Janicki and A. Weron (1994a), Simulation and Chaotic Behavior of α-Stable Stochastic Processes, Marcel Dekker, New York. | Zbl 0946.60028

[012] M. Kanter (1975), Stable densities under change of scale and total variation inequalities, Ann. Probab. 31, 697-707. | Zbl 0323.60013

[013] A. Lasota and M. C. Mackey (1994), Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, Springer, New York. | Zbl 0784.58005

[014] B. Mandelbrot and J. W. van Ness (1968), Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10, 422-437. | Zbl 0179.47801

[015] M. Shao and C. L. Nikias (1993), Signal processing with fractional lower order moments: stable processes and their applications, Proc. IEEE 81, 986-1010.

[016] B. W. Stuck and B. Kleiner (1974), A statistical analysis of telephone noise, Bell Syst. Tech. J. 53, 1263-1320.

[017] A. Weron (1984), Stable processes and measures: A survey, in: Probability Theory on Vector Spaces III, D. Szynal and A. Weron (eds.), Lecture Notes in Math. 1080, Springer, New York, 306-364.