Convex records in Euclidean space are considered. We provide both lower and upper bounds on the probability that in a sequence of random vectors ,..., there are exactly k records.
@article{bwmeta1.element.bwnjournal-article-zmv23i1p1bwm, author = {Marek Ka\l uszka}, title = {Estimates of some probabilities in multidimensional convex records}, journal = {Applicationes Mathematicae}, volume = {23}, year = {1995}, pages = {1-11}, zbl = {0826.60008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv23i1p1bwm} }
Kałuszka, Marek. Estimates of some probabilities in multidimensional convex records. Applicationes Mathematicae, Tome 23 (1995) pp. 1-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv23i1p1bwm/
[000] [1] I. Bárany and Z. Füredi, On the shape of the convex hull of random points, Probab. Theory Related Fields 80 (1988), 72-87. | Zbl 0639.60015
[001] [2] W. Feller, An Introduction to Probability Theory and its Applications, Vol. I, Wiley, New York, 1961. | Zbl 0039.13201
[002] [3] C. M. Goldie and S. Resnick, Records in a partially ordered set, Ann. Probab. 17 (1989), 678-699. | Zbl 0678.60001
[003] [4] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1965. | Zbl 0918.65002
[004] [5] P. Groeneboom, Limit theorems for convex hulls, Probab. Theory Related Fields 79 (1988), 327-368. | Zbl 0635.60012
[005] [6] M. G. Kendall, and P. A. P. Moran, Geometrical Probability, Griffin's Statist. Monographs Courses 5, Griffin, London, 1963.
[006] [7] J. F. C. Kingman, Random secants of a convex body, J. Appl. Probab. 6 (1969), 660-672. | Zbl 0186.51603
[007] [8] V. B. Nevzorov, Records, Teor. Veroyatnost. i Primenen. 32 (2) (1987), 219-252 (in Russian).
[008] [9] S. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, Berlin, 1987. | Zbl 0633.60001
[009] [10] I. M. Yaglom and V. G. Boltyanskiĭ, Convex Bodies, Nauka, Moscow, 1951 (in Russian). | Zbl 0098.35501