We propose a class of unbiased and strongly consistent nonparametric kernel estimates of a probability density function, based on a random choice of the sample size and the kernel function. The expected sample size can be arbitrarily small and mild conditions on the local behavior of the density function are imposed.
@article{bwmeta1.element.bwnjournal-article-zmv22z4p485bwm, author = {Tomasz Rychlik}, title = {A class of unbiased kernel estimates of a probability density function}, journal = {Applicationes Mathematicae}, volume = {23}, year = {1995}, pages = {485-497}, zbl = {0814.62022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv22z4p485bwm} }
Rychlik, Tomasz. A class of unbiased kernel estimates of a probability density function. Applicationes Mathematicae, Tome 23 (1995) pp. 485-497. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv22z4p485bwm/
[000] [1] M. S. Bartlett, Statistical estimation of density funtions, Sankhyā Ser. A 25 (1963), 245-254. | Zbl 0129.32302
[001] [2] P. Bickel and E. Lehmann, Unbiased estimation in convex families, Ann. Math. Statist. 40 (1969), 1523-1535. | Zbl 0197.44602
[002] [3] N. N. Chentsov, An estimate of an unknown probability density under observations, Dokl. Akad. Nauk SSSR 147 (1962), 45-48 (in Russian).
[003] [4] L. P. Devroye, A Course in Density Estimation, Birkhäuser, Boston, 1987. | Zbl 0617.62043
[004] [5] L. P. Devroye and L. Győrfi, Nonparametric Density Estimation. The L_1 View, Wiley, New York, 1985. | Zbl 0546.62015
[005] [6] L. P. Devroye and T. J. Wagner, The L_1 convergence of kernel density estimates, Ann. Statist. 7 (1979), 1136-1139. | Zbl 0423.62031
[006] [7] H. Doss and J. Sethuraman, The price of bias reduction when there is no unbiased estimate, ibid. 17 (1989), 440-442. | Zbl 0669.62010
[007] [8] L. Gajek, On improving density estimators which are not bona fide functions, ibid. 14 (1986), 1612-1618. | Zbl 0623.62034
[008] [9] J. Koronacki, Kernel estimation of smooth densities using Fabian's approach, Statistics 18 (1987), 37-47. | Zbl 0612.62054
[009] [10] R. Kronmal and M. Tarter, The estimation of probability densities and cumulatives by Fourier series methods, J. Amer. Statist. Assoc. 63 (1968), 925-952. | Zbl 0169.21403
[010] [11] R. C. Liu and L. D. Brown, Nonexistence of informative unbiased estimators in singular problems, Ann. Statist. 21 (1993), 1-13. | Zbl 0783.62026
[011] [12] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist. 33 (1962), 1065-1076. | Zbl 0116.11302
[012] [13] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, ibid. 27 (1956), 832-837. | Zbl 0073.14602
[013] [14] T. Rychlik, Unbiased nonparametric estimation of the derivative of the mean, Statist. Probab. Lett. 10 (1990), 329-333. | Zbl 0703.62049
[014] [15] W. R. Schucany and J. P. Sommers, Improvement of kernel type density estimators, J. Amer. Statist. Assoc. 72 (1977), 420-423. | Zbl 0369.62039
[015] [16] E. F. Schuster, Estimation of a probability density function and its derivatives, Ann. Math. Statist. 40 (1969), 1187-1195. | Zbl 0212.21703
[016] [17] B. W. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives, Ann. Statist. 6 (1978), 177-184. | Zbl 0376.62024
[017] [18] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501
[018] [19] V. G. Voinov and M. S. Nikulin, Unbiased Estimators and their Applications, Vol. 1, Univariate Case, Kluwer Academic Publ., Dordrecht, 1993. | Zbl 0832.62019
[019] [20] H. Yamato, Some statistical properties of estimators of density and distribution functions, Bull. Math. Statist. 15 (1972), 113-131. | Zbl 0259.62036