Some remarks on the space of differences of sublinear functions
Bartels, Sven ; Pallaschke, Diethard
Applicationes Mathematicae, Tome 22 (1994), p. 419-426 / Harvested from The Polish Digital Mathematics Library

Two properties concerning the space of differences of sublinear functions D(X) for a real Banach space X are proved. First, we show that for a real separable Banach space (X,‖·‖) there exists a countable family of seminorms such that D(X) becomes a Fréchet space. For X = ℝ^n this construction yields a norm such that D(ℝ^n) becomes a Banach space. Furthermore, we show that for a real Banach space with a smooth dual every sublinear Lipschitzian function can be expressed by the Fenchel conjugate of the farthest point mapping to its subdifferential at the origin. This leads to a simple family of sublinear functions which contains an exhaustive family of upper convex approximations for any quasidifferentiable function.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:219104
@article{bwmeta1.element.bwnjournal-article-zmv22z3p419bwm,
     author = {Sven Bartels and Diethard Pallaschke},
     title = {Some remarks on the space of differences of sublinear functions},
     journal = {Applicationes Mathematicae},
     volume = {22},
     year = {1994},
     pages = {419-426},
     zbl = {0826.49011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv22z3p419bwm}
}
Bartels, Sven; Pallaschke, Diethard. Some remarks on the space of differences of sublinear functions. Applicationes Mathematicae, Tome 22 (1994) pp. 419-426. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv22z3p419bwm/

[000] [1] U. Cegrell, On the space of delta-convex functions and its dual, Bull. Math. Soc. Sci. Math. R. S. Roumanie 22 (1978), 133-139.

[001] [2] V. F. Demyanov and A. M. Rubinov, Quasidifferential Calculus, Optimization Software Inc., Publications Division, New York, 1986.

[002] [3] J. Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Math. 485, Springer, Heidelberg, 1975. | Zbl 0307.46009

[003] [4] J. Grzybowski, Minimal pairs of compact convex sets, Arch. Math. (Basel), submitted. | Zbl 0804.52002

[004] [5] L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3 (1954), 181-186. | Zbl 0064.10504

[005] [6] D. Pallaschke, P. Recht and R. Urbański, On locally Lipschitz quasidifferentiable functions in Banach spaces, Optimization 17 (1986), 287-295. | Zbl 0597.49011

[006] [7] D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of compact convex sets, Bull. Polish Acad. Sci. Math. 39 (1991), 1-5. | Zbl 0759.52003

[007] [8] D. Pallaschke and R. Urbański, Some criteria for the minimality of pairs of compact convex sets, Z. Oper. Res. 37 (1993), 129-150. | Zbl 0781.49011

[008] [9] D. Pallaschke and R. Urbański, Reduction of quasidifferentials and minimal representations, Math. Programming Ser. A, to appear. | Zbl 0824.49016

[009] [10] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1972. | Zbl 0224.49003

[010] [11] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, and Reidel, Boston, 1984.

[011] [12] H. H. Schäfer, Topological Vector Spaces, Springer, New York, 1971.

[012] [13] S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273. | Zbl 0759.52004