The properties of two recursive estimators of the Fourier coefficients of a regression function with respect to a complete orthonormal system of bounded functions (ek) , k=1,2,..., are considered in the case of the observation model , i=1,...,n , where are independent random variables with zero mean and finite variance, , i=1,...,n, form a random sample from a distribution with density ϱ =1/(b-a) (uniform distribution) and are independent of the errors , i=1,...,n . Unbiasedness and mean-square consistency of the examined estimators are proved and their mean-square errors are compared.
@article{bwmeta1.element.bwnjournal-article-zmv22z2p275bwm, author = {Waldemar Popi\'nski}, title = {On Fourier coefficient estimators consistent in the mean-square sense}, journal = {Applicationes Mathematicae}, volume = {22}, year = {1994}, pages = {275-284}, zbl = {0801.62040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv22z2p275bwm} }
Popiński, Waldemar. On Fourier coefficient estimators consistent in the mean-square sense. Applicationes Mathematicae, Tome 22 (1994) pp. 275-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv22z2p275bwm/
[000] [1] A. E. Albert and L. A. Gardner, Stochastic Approximation and Nonlinear Regression, Cambridge Univ. Press, 1967. | Zbl 0162.21502
[001] [2] J. Koronacki, Stochastic Approximation-Optimization Methods under Random Conditions, WNT, Warszawa, 1989 (in Polish). | Zbl 0698.62084
[002] [3] E. A. Nadaraya, Nonparametric Estimation of Probability Densities and Regression Curves, Kluwer Acad. Publ., Dordrecht, 1989. | Zbl 0709.62039
[003] [4] G. Sansone, Orthogonal Functions, Interscience, New York, 1959.
[004] [5] A. Zygmund, Trigonometrical Series, Dover, 1955. | Zbl 0065.05604