We study estimation problems for periodically correlated, non gaussian processes. We estimate the correlation functions and the spectral densities from continuous-time samples. From a random time sample, we construct three types of estimators for the spectral densities and we prove their consistency.
@article{bwmeta1.element.bwnjournal-article-zmv22z2p227bwm, author = {Vincent Monsan}, title = {Poisson sampling for spectral estimation in periodically correlated processes}, journal = {Applicationes Mathematicae}, volume = {22}, year = {1994}, pages = {227-266}, zbl = {0814.62059}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv22z2p227bwm} }
Monsan, Vincent. Poisson sampling for spectral estimation in periodically correlated processes. Applicationes Mathematicae, Tome 22 (1994) pp. 227-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv22z2p227bwm/
[000] [1] D. Dehay, Spectral analysis of the covariance kernel of the almost periodically correlated processes, Stochastic Process. Appl., submitted. | Zbl 0793.62050
[001] [2] H. L. Hurd, An investigation of periodically correlated processes, Ph.D. Dissertation, Duke Univ., Durham, N.C., 1969.
[002] [3] H. L. Hurd, Periodically correlated processes with discontinuous correlation functions, Theory Probab. Appl. 19 (1974), 804-807. | Zbl 0326.60064
[003] [4] H. L. Hurd, Nonparametric time series analysis for periodically correlated processes, IEEE Trans. Inform. Theory 35 (1989), 350-359. | Zbl 0672.62096
[004] [5] E. Masry, Poisson sampling and spectral estimation of continuous-time parameter processes, ibid. 24 (1978), 173-183. | Zbl 0376.62062
[005] [6] E. Masry and M. C. Lui, Discrete-time spectral estimation of continuous parameter -A new consistent estimate, ibid. 22 (1976), 298-312. | Zbl 0336.62078
[006] [7] F. Messaci, Estimation de la densité spectrale d'un processus en temps continu par échantillonnage poissonnien, Ph.D. Dissertation, Rouen Univ., 1986.
[007] [8] H. S. Shapiro and R. A. Silverman, Alias-free sampling of random noise, J. Soc. Indust. Appl. Math. 8 (1960), 225-248. | Zbl 0121.14204