We consider the skew product transformation T(x,y)= (f(x), ) where f is an endomorphism of a Lebesgue space (X,A,p), e : X → S and is a family of Lasota-Yorke type maps of the unit interval into itself. We obtain conditions under which the ergodic properties of f imply the same properties for T. Consequently, we get the asymptotical stability of random perturbations of a single Lasota-Yorke type map. We apply this to some probabilistic model of the motion of cogged bits in the rotary drilling of hard rock with high rotational speed.
@article{bwmeta1.element.bwnjournal-article-zmv22z2p155bwm, author = {Zbigniew Kowalski}, title = {Ergodic properties of skew products withfibre maps of Lasota-Yorke type}, journal = {Applicationes Mathematicae}, volume = {22}, year = {1994}, pages = {155-163}, zbl = {0807.28010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv22z2p155bwm} }
Kowalski, Zbigniew. Ergodic properties of skew products withfibre maps of Lasota-Yorke type. Applicationes Mathematicae, Tome 22 (1994) pp. 155-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv22z2p155bwm/
[000] [1] N. Dunford and J. Schwartz, Linear Operators I, Interscience, New York, 1958.
[001] [2] P. Góra and A. Boyarsky, Compactness of invariant densities for families of expanding, piecewise monotonic transformations, Canad. J. Math. 61 (1989), 855-869. | Zbl 0689.28007
[002] [3] K. Horbacz, Statistical properties of the Ejgielies model of a cogged bit, Zastos. Mat. 21 (1991), 15-26. | Zbl 0759.47005
[003] [4] Z. S. Kowalski, Bernoulli properties of piecewise monotonic transformations, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 59-61. | Zbl 0422.28011
[004] [5] Z. S. Kowalski, Stationary perturbations based on Bernoulli processes, Studia Math. 97 (1990), 53-57. | Zbl 0752.28009
[005] [6] Z. S. Kowalski, Ergodic properties of skew products with Lasota-Yorke type maps in the base, ibid. 106 (1993), 45-57. | Zbl 0815.28013
[006] [7] A. Lasota and P. Rusek, An application of ergodic theory to the determination of the efficiency of cogged drilling bits, Archiwum Górnictwa 3 (1974), 281-295 (in Polish).
[007] [8] A. Lasota and J. A. Yorke, On the existence of invariant measure for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488. | Zbl 0298.28015
[008] [9] T. Morita, Asymptotic behavior of one-dimensional random dynamical systems, J. Math. Soc. Japan 37 (1985), 651-663. | Zbl 0587.58027
[009] [10] T. Morita, Deterministic version lemmas in ergodic theory of random dynamical systems, Hiroshima Math. J. 18 (1988), 15-29. | Zbl 0698.28009