@article{bwmeta1.element.bwnjournal-article-smv143i3p251bwm, author = {Susan Slome}, title = {The Heisenberg group and the group Fourier transform of regular homogeneous distributions}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {251-266}, zbl = {0968.46028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv143i3p251bwm} }
Slome, Susan. The Heisenberg group and the group Fourier transform of regular homogeneous distributions. Studia Mathematica, Tome 141 (2000) pp. 251-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv143i3p251bwm/
[000] [1] H. Bateman, Higher Transcendental Functions, McGraw-Hill, 1953.
[001] [2] D. Geller, Some results in theory for the Heisenberg group, Duke Math. J. 47 (1980), 365-390. | Zbl 0474.43012
[002] [3] D. Geller, Fourier analysis on the Heisenberg group I: Schwartz space, J. Funct. Anal. 36 (1980), 205-254. | Zbl 0433.43008
[003] [4] D. Geller, Local solvability and homogeneous distributions on the Heisenberg group, Comm. Partial Differential Equations 5 (1980), 475-560. | Zbl 0488.22020
[004] [5] D. Geller, Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg group, Canad. J. Math. 36 (1984), 615-684. | Zbl 0596.46034
[005] [6] D. Geller, Analytic Pseudodifferential Operators for the Heisenberg Group and Local Solvability, Math. Notes 37, Princeton Univ. Press, 1990. | Zbl 0695.47051
[006] [7] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, 1980. | Zbl 0459.46001
[007] [8] E. Stein, Harmonic Analysis, Princeton Math. Ser. 43, Monogr. Harmonic Anal. III, Princeton Univ. Press, 1993.
[008] [9] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser. 32, Princeton Univ. Press, 1971. | Zbl 0232.42007