A sufficient condition for the asymptotic stability of Markov operators acting on measures defined on Polish spaces is presented.
@article{bwmeta1.element.bwnjournal-article-smv143i2p145bwm, author = {Tomasz Szarek}, title = {The stability of Markov operators on Polish spaces}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {145-152}, zbl = {0964.60071}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv143i2p145bwm} }
Szarek, Tomasz. The stability of Markov operators on Polish spaces. Studia Mathematica, Tome 141 (2000) pp. 145-152. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv143i2p145bwm/
[000] [1] M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. H. Poincaré 24 (1988), 367-394. | Zbl 0653.60057
[001] [2] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. | Zbl 0172.21201
[002] [3] R. M. Dudley, Probabilities and Metrics, Aarhus Universitet, 1976.
[003] [4] S. Ethier and T. Kurtz, Markov Processes, Wiley, 1986.
[004] [5] R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285. | Zbl 0053.09601
[005] [6] S. Karlin, Some random walks arising in learning models, Pacific J. Math. 3 (1953), 725-756. | Zbl 0051.10603
[006] [7] A. Lasota, From fractals to stochastic differential equations, in: Chaos-the Interplay between Stochastic and Deterministic Behaviour (Karpacz, 1995), Springer, 1995.
[007] [8] A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. | Zbl 0804.47033
[008] [9] T. Szarek, Markov operators acting on Polish spaces, Ann. Polon. Math. 67 (1997), 247-257. | Zbl 0903.60052