Weyl's theorems and continuity of spectra in the class of p-hyponormal operators
Djordjević, S. ; Duggal, B.
Studia Mathematica, Tome 141 (2000), p. 23-32 / Harvested from The Polish Digital Mathematics Library

We show that p-hyponormal operators obey Weyl's and a-Weyl's theorem. Also, we show that the spectrum, Weyl spectrum, Browder spectrum and approximate point spectrum are continuous functions in the class of all p-hyponormal operators.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216807
@article{bwmeta1.element.bwnjournal-article-smv143i1p23bwm,
     author = {S. Djordjevi\'c and B. Duggal},
     title = {Weyl's theorems and continuity of spectra in the class of p-hyponormal operators},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {23-32},
     zbl = {0984.47020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv143i1p23bwm}
}
Djordjević, S.; Duggal, B. Weyl's theorems and continuity of spectra in the class of p-hyponormal operators. Studia Mathematica, Tome 141 (2000) pp. 23-32. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv143i1p23bwm/

[000] [1] A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), 307-315.

[001] [2] J. V. Baxley, On the Weyl spectrum of a Hilbert space operator, Proc. Amer. Math. Soc. 34 (1972), 447-452. | Zbl 0256.47001

[002] [3] S. K. Berberian, Approximate proper vectors, ibid. 13 (1962), 111-114. | Zbl 0166.40503

[003] [4] M. Chō and A. Huruya, p-hyponormal operators for 0 < p < 1/2, Comment. Math. 33 (1993), 23-29.

[004] [5] M. Chō, M. Itoh and S. Ōshiro, Weyl's theorem holds for p-hyponormal operators, Glasgow Math. J. 39 (1997), 217-220.

[005] [6] S. V. Djordjević, On continuity of the essential approximate point spectrum, Facta Univer. (Niš) 10 (1995), 97-104. | Zbl 0889.47009

[006] [7] S. V. Djordjević and D. S. Djordjević, Weyl's theorems: continuity of the spectrum and quasihyponormal operators, Acta Sci. Math. (Szeged) 64 (1998), 259-269. | Zbl 0918.47014

[007] [8] B. P. Duggal, On quasi-similar p-hyponormal operators, Integral Equations Operator Theory 26 (1996), 338-345. | Zbl 0866.47014

[008] [9] S. Kurepa, Funkcionalna analiza, Školska knjiga, Zagreb, 1981 (in Croatian).

[009] [10] J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176. | Zbl 0042.12302

[010] [11] V. Rakočević, On the essential approximate point spectrum II, Mat. Vesnik 36 (1984), 89-97. | Zbl 0535.47002

[011] [12] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919. | Zbl 0686.47005

[012] [13] M. Schechter, Principles of Functional Analysis, 2nd printing, Academic Press, New York, 1973.

[013] [14] A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integral Equations Operator Theory 33 (1999), 221-230. | Zbl 0924.47015