We study a division problem in the Hardy classes of the unit ball of which generalizes the corona problem, the generators being allowed to have common zeros. MPrecisely, if S is a subset of , we study conditions on a -valued bounded Mholomorphic function B, with , in order that for 1 ≤ p < ∞ and any function with there is a -valued holomorphic function F with f = B·F, i.e. the module generated by the components of B in the Hardy class is the entire module . As a special case, for S = ∅, we get the corona theorem.
@article{bwmeta1.element.bwnjournal-article-smv143i1p1bwm, author = {E. Amar and C. Menini}, title = {Universal divisors in Hardy spaces}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {1-21}, zbl = {0967.32006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv143i1p1bwm} }
Amar, E.; Menini, C. Universal divisors in Hardy spaces. Studia Mathematica, Tome 141 (2000) pp. 1-21. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv143i1p1bwm/
[000] [1] D. & E. Amar, Sur les suites d'interpolation en plusieurs variables, Pacific J. Math. 75 (1978), 15-20. | Zbl 0392.32002
[001] [2] E. Amar, On the corona problem, J. Geom. Anal. 1 (1991), 291-305. | Zbl 0794.32007
[002] [3] E. Amar, Interpolating sequences for in the ball of , Ark. Mat., to appear.
[003] [4] E. Amar et A. Bonami, Mesures de Carleson d’ordre α et solutions au bord de l’équation , Bull. Soc. Math. France 107 (1979), 23-48. | Zbl 0409.46035
[004] [5] M. Andersson and H. Carlsson, Estimates of solutions of the and BMOA corona problem, Math. Ann. 316 (2000), 83-102.
[005] [6] G. Henkin, H. Lewy's equation and analysis on pseudoconvex manifolds, Part I, Russian Math. Surveys 32 (1977), no. 3, 59-130; Part II, Math. USSR-Sb. 31 (1977), no. 1, 63-94.
[006] [7] L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943-949. | Zbl 0172.41701
[007] [8] C. Horowitz, Factorization theorems for functions in the Bergman spaces, Duke Math. J. 44 (1977), 201-213.
[008] [9] W. Rudin, Function Theory in the Unit Ball of , Grundlehren Math. Wiss. 241, Springer,1980.
[009] [10] H. Skoda, Valeurs au bord pour les solutions de l'équation d'', et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), 225-299. | Zbl 0351.31007
[010] [11] N. Varopoulos, BMO functions and the -equation, Pacific J. Math. 71 (1977), 221-273.