Universal divisors in Hardy spaces
Amar, E. ; Menini, C.
Studia Mathematica, Tome 141 (2000), p. 1-21 / Harvested from The Polish Digital Mathematics Library

We study a division problem in the Hardy classes Hp() of the unit ball of 2 which generalizes the Hp corona problem, the generators being allowed to have common zeros. MPrecisely, if S is a subset of , we study conditions on a k-valued bounded Mholomorphic function B, with B|S=0, in order that for 1 ≤ p < ∞ and any function fHp() with f|S=0 there is a k-valued Hp() holomorphic function F with f = B·F, i.e. the module generated by the components of B in the Hardy class Hp() is the entire module MS:=fHp():f|S=0. As a special case, for S = ∅, we get the Hp corona theorem.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216806
@article{bwmeta1.element.bwnjournal-article-smv143i1p1bwm,
     author = {E. Amar and C. Menini},
     title = {Universal divisors in Hardy spaces},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {1-21},
     zbl = {0967.32006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv143i1p1bwm}
}
Amar, E.; Menini, C. Universal divisors in Hardy spaces. Studia Mathematica, Tome 141 (2000) pp. 1-21. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv143i1p1bwm/

[000] [1] D. & E. Amar, Sur les suites d'interpolation en plusieurs variables, Pacific J. Math. 75 (1978), 15-20. | Zbl 0392.32002

[001] [2] E. Amar, On the corona problem, J. Geom. Anal. 1 (1991), 291-305. | Zbl 0794.32007

[002] [3] E. Amar, Interpolating sequences for H() in the ball of n, Ark. Mat., to appear.

[003] [4] E. Amar et A. Bonami, Mesures de Carleson d’ordre α et solutions au bord de l’équation ¯, Bull. Soc. Math. France 107 (1979), 23-48. | Zbl 0409.46035

[004] [5] M. Andersson and H. Carlsson, Estimates of solutions of the Hp and BMOA corona problem, Math. Ann. 316 (2000), 83-102.

[005] [6] G. Henkin, H. Lewy's equation and analysis on pseudoconvex manifolds, Part I, Russian Math. Surveys 32 (1977), no. 3, 59-130; Part II, Math. USSR-Sb. 31 (1977), no. 1, 63-94.

[006] [7] L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943-949. | Zbl 0172.41701

[007] [8] C. Horowitz, Factorization theorems for functions in the Bergman spaces, Duke Math. J. 44 (1977), 201-213.

[008] [9] W. Rudin, Function Theory in the Unit Ball of n, Grundlehren Math. Wiss. 241, Springer,1980.

[009] [10] H. Skoda, Valeurs au bord pour les solutions de l'équation d'', et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), 225-299. | Zbl 0351.31007

[010] [11] N. Varopoulos, BMO functions and the ¯-equation, Pacific J. Math. 71 (1977), 221-273.