Polydisc slicing in n
Oleszkiewicz, Krzysztof ; Pełczyński, Aleksander
Studia Mathematica, Tome 141 (2000), p. 281-294 / Harvested from The Polish Digital Mathematics Library

Let D be the unit disc in the complex plane ℂ. Then for every complex linear subspace H in n of codimension 1, vol2n-2(Dn-1)vol2n-2(HDn)2vol2n-2(Dn-1). The lower bound is attained if and only if H is orthogonal to the versor ej of the jth coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is orthogonal to a vector ej+σek for some 1 ≤ j < k ≤ n and some σ ∈ ℂ with |σ| = 1. We identify n with 2n; by volk(·) we denote the usual k-dimensional volume in 2n. The result is a complex counterpart of Ball’s [B1] result for cube slicing.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216804
@article{bwmeta1.element.bwnjournal-article-smv142i3p281bwm,
     author = {Krzysztof Oleszkiewicz and Aleksander Pe\l czy\'nski},
     title = {Polydisc slicing in $$\mathbb{C}$^n$
            },
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {281-294},
     zbl = {0971.32018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p281bwm}
}
Oleszkiewicz, Krzysztof; Pełczyński, Aleksander. Polydisc slicing in $ℂ^n$
            . Studia Mathematica, Tome 141 (2000) pp. 281-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p281bwm/

[000] [B1] K. Ball, Cube slicing in n, Proc. Amer. Math. Soc. 97 (1986), 465-473.

[001] [B2] K. Ball, Volumes of sections of cubes and related problems, in: Geometric Aspects of Functional Analysis (1987-88), Lecture Notes in Math. 1376, Springer, Berlin, 1989, 251-260.

[002] [Bar] F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335-361.

[003] [F] W. Feller, Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York, 1996.

[004] [H] D. Hensley, Slicing the cube in Rn and probability (bounds for the measure of a central cube slice in Rn by probability methods), Proc. Amer. Math. Soc. 73 (1979), 95-100. | Zbl 0394.52006

[005] [KL] A. Koldobsky and M. Lifshits, Average volume of sections of star bodies, in: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA), 1996-2000, V. Milman and G. Schechtman (eds.), Lecture Notes in Math. 1745, Springer, 2000, 119-146. | Zbl 0973.52002

[006] [K] H. König, On the best constants in the Khintchine inequality for variables on the spheres, preprint, Kiel Universität, 1998.

[007] [KK] H. König and S. Kwapień, Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors, Positivity, to appear. | Zbl 0998.60018

[008] [MP] M. Meyer and A. Pajor, Sections of the unit ball of lpn, J. Funct. Anal. 80 (1988), 109-123. | Zbl 0667.46004

[009] [NP] F. L. Nazarov and A. N. Podkorytov, Ball, Haagerup, and distribution functions, in: Complex Analysis, Operator Theory, and Related Topics: S. A. Vinogradov - In Memoriam, V. Havin and N. Nikolski (eds.), Oper. Theory Adv. Appl. 113, Birkhäuser, Basel, 2000, 247-268.

[010] [P] G. Pólya, Berechnung eines bestimmten Integrals, Math. Ann. 74 (1913), 204-212. | Zbl 44.0357.02

[011] [RG] I. M. Ryshik and I. S. Gradstein, Tables of Series, Products and Integrals, Deutscher Verlag Wiss., Berlin, 1957. | Zbl 0080.33703

[012] [S] M. Schmuckenschläger, Volume of intersections and sections of the unit ball of lpn, Proc. Amer. Math. Soc. 126 (1998), 1527-1530. | Zbl 0896.52009

[013] [V] J. D. Vaaler, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), 543-553. | Zbl 0465.52011

[014] [W] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1995. | Zbl 0849.33001