Numerical index of vector-valued function spaces
Martín, Miguel ; Payá, Rafael
Studia Mathematica, Tome 141 (2000), p. 269-280 / Harvested from The Polish Digital Mathematics Library

We show that the numerical index of a c0-, l1-, or l-sum of Banach spaces is the infimum of the numerical indices of the summands. Moreover, we prove that the spaces C(K,X) and L1(μ,X) (K any compact Hausdorff space, μ any positive measure) have the same numerical index as the Banach space X. We also observe that these spaces have the so-called Daugavet property whenever X has the Daugavet property.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216803
@article{bwmeta1.element.bwnjournal-article-smv142i3p269bwm,
     author = {Miguel Mart\'\i n and Rafael Pay\'a},
     title = {Numerical index of vector-valued function spaces},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {269-280},
     zbl = {0986.46022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p269bwm}
}
Martín, Miguel; Payá, Rafael. Numerical index of vector-valued function spaces. Studia Mathematica, Tome 141 (2000) pp. 269-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p269bwm/

[000] [1] Y. A. Abramovich, New classes of spaces on which compact operators satisfy the Daugavet equation, J. Operator Theory 25 (1991), 331-345. | Zbl 0833.47023

[001] [2] Y. A. Abramovich, C. D. Aliprantis and O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Funct. Anal. 97 (1991), 215-230. | Zbl 0770.47005

[002] [3] C. Aparicio, F. Oca na, R. Payá and A. Rodríguez, A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137. | Zbl 0604.46021

[003] [4] H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere in Banach algebras, Ann. of Math. 62 (1955), 217-229. | Zbl 0067.35002

[004] [5] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. | Zbl 0207.44802

[005] [6] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973. | Zbl 0262.47001

[006] [7] I. K. Daugavet, A property of completely continuous operators in the space C, Uspekhi Mat. Nauk 18 (1963), no. 5, 157-158 (in Russian). | Zbl 0138.38603

[007] [8] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.

[008] [9] J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc. (2) 2 (1970), 481-488. | Zbl 0197.10402

[009] [10] B. W. Glickfeld, On an inequality of Banach algebra geometry and semi-inner-product space theory, Illinois J. Math. 14 (1970), 76-81. | Zbl 0189.13304

[010] [11] K. E. Gustafson and D. K. M. Rao, Numerical Range. The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.

[011] [12] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin et D. Werner, Espaces de Banach ayant la propriété de Daugavet, C. R. Acad. Sci. Paris Sér. I 325 (1997), 1291-1294.

[012] [13] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin et D. Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), 855-873. | Zbl 0938.46016

[013] [14] Å. Lima, On extreme operators on finite-dimensional Banach spaces whose unit balls are polytopes, Ark. Mat. 19 (1981), 97-116. | Zbl 0464.46006

[014] [15] G. López, M. Martín and R. Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), 207-212. | Zbl 0921.46015

[015] [16] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43. | Zbl 0102.32701

[016] [17] C. M. McGregor, Finite dimensional normed linear spaces with numerical index 1, J. London Math. Soc. (2) 3 (1971), 717-721. | Zbl 0212.14304

[017] [18] D. Werner, The Daugavet equation for operators on function spaces, J. Funct. Anal. 143 (1997), 117-128. | Zbl 0899.47025

[018] [19] P. Wojtaszczyk, Some remarks on the Daugavet equation, Proc. Amer. Math. Soc. 115 (1992), 1047-1052. | Zbl 0758.46006