On ideals consisting of topological zero divisors
Wawrzyńczyk, Antoni
Studia Mathematica, Tome 141 (2000), p. 245-251 / Harvested from The Polish Digital Mathematics Library

The class ω(A) of ideals consisting of topological zero divisors of a commutative Banach algebra A is studied. We prove that the maximal ideals of the class ω(A) are of codimension one.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216801
@article{bwmeta1.element.bwnjournal-article-smv142i3p245bwm,
     author = {Antoni Wawrzy\'nczyk},
     title = {On ideals consisting of topological zero divisors},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {245-251},
     zbl = {1002.46031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p245bwm}
}
Wawrzyńczyk, Antoni. On ideals consisting of topological zero divisors. Studia Mathematica, Tome 141 (2000) pp. 245-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p245bwm/

[000] [1] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dek- ker, 1988.

[001] [2] V. Müller, Removability of ideals in commutative Banach algebras, Studia Math. 78 (1984), 297-307. | Zbl 0495.46037

[002] [3] Z. Słodkowski, On ideals consisting of joint topological divisors of zero, Studia Math. 48 (1973), 83-88. | Zbl 0271.46046

[003] [4] W. Żelazko, A characterization of Shilov boundary in function algebras, Comment. Math. 14 (1970) 59-64.

[004] [5] W. Żelazko, On a certain class of non-removable ideals in Banach algebras, Studia Math. 44 (1972) 87-92. | Zbl 0213.40603

[005] [6] W. Żelazko, Banach Algebras, PWN-Elsevier, 1973.

[006] [7] W. Żelazko, An axiomatic approach to joint spectra I, Studia Math. 64 (1979) 249-261. | Zbl 0426.47002