The class ω(A) of ideals consisting of topological zero divisors of a commutative Banach algebra A is studied. We prove that the maximal ideals of the class ω(A) are of codimension one.
@article{bwmeta1.element.bwnjournal-article-smv142i3p245bwm, author = {Antoni Wawrzy\'nczyk}, title = {On ideals consisting of topological zero divisors}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {245-251}, zbl = {1002.46031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p245bwm} }
Wawrzyńczyk, Antoni. On ideals consisting of topological zero divisors. Studia Mathematica, Tome 141 (2000) pp. 245-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p245bwm/
[000] [1] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dek- ker, 1988.
[001] [2] V. Müller, Removability of ideals in commutative Banach algebras, Studia Math. 78 (1984), 297-307. | Zbl 0495.46037
[002] [3] Z. Słodkowski, On ideals consisting of joint topological divisors of zero, Studia Math. 48 (1973), 83-88. | Zbl 0271.46046
[003] [4] W. Żelazko, A characterization of Shilov boundary in function algebras, Comment. Math. 14 (1970) 59-64.
[004] [5] W. Żelazko, On a certain class of non-removable ideals in Banach algebras, Studia Math. 44 (1972) 87-92. | Zbl 0213.40603
[005] [6] W. Żelazko, Banach Algebras, PWN-Elsevier, 1973.
[006] [7] W. Żelazko, An axiomatic approach to joint spectra I, Studia Math. 64 (1979) 249-261. | Zbl 0426.47002