We propose a framework to define dimensions of Borel measures in a metric space by formulating a set of natural properties for a measure-dimension mapping, namely monotonicity, bi-Lipschitz invariance, (σ-)stability, etc. We study the behaviour of most popular definitions of measure dimensions in regard to our list, with special attention to the standard correlation dimensions and their modified versions.
@article{bwmeta1.element.bwnjournal-article-smv142i3p219bwm, author = {Pertti Mattila and Manuel Mor\'an and Jos\'e-Manuel Rey}, title = {Dimension of a measure}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {219-233}, zbl = {1008.28005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p219bwm} }
Mattila, Pertti; Morán, Manuel; Rey, José-Manuel. Dimension of a measure. Studia Mathematica, Tome 141 (2000) pp. 219-233. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p219bwm/
[000] [1] L. Barreira, Ya. Pesin and J. Schmeling, Dimensions of hyperbolic measures--a proof of the Eckmann-Ruelle conjecture, Ann. of Math., to appear. | Zbl 0871.58054
[001] [2] C. D. Cutler, Some results on the behaviour and estimation of the fractal dimensions of distributions on attractors, J. Stat. Phys. 62 (1990), 651-708. | Zbl 0738.58029
[002] [3] K. J. Falconer, Fractal Geometry--Mathematical Foundations and Applications, Wiley, 1990. | Zbl 0689.28003
[003] [4] K. J. Falconer, Techniques in Fractal Geometry, Wiley, 1998. | Zbl 0869.28003
[004] [5] P. Grassberger and I. Procaccia, Characterization of strange attractors, Phys. Rev. Lett. 50 (1983), 346-349.
[005] [6] M. de Guzmán, Differentiation of Integrals in , Lecture Notes in Math. 481, Springer, 1975.
[006] [7] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, 1995. | Zbl 0819.28004
[007] [8] Ya. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions, J. Statist. Phys. 71 (1993), 529-547. | Zbl 0916.28006
[008] [9] L.-S. Young, Dimension, entropy and Liapunov exponents, Ergodic Theory Dynam. Systems 2 (1982), 109-124.