This paper is concerned with α-times integrated C-semigroups for α > 0 and the associated abstract Cauchy problem: , t >0; u(0) = 0. We first investigate basic properties of an α-times integrated C-semigroup which may not be exponentially bounded. We then characterize the generator A of an exponentially bounded α-times integrated C-semigroup, either in terms of its Laplace transforms or in terms of existence of a unique solution of the above abstract Cauchy problem for every x in .
@article{bwmeta1.element.bwnjournal-article-smv142i3p201bwm, author = {Chung-Cheng Kuo and Sen-Yen Shaw}, title = {On $\alpha$-times integrated C-semigroups and the abstract Cauchy problem}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {201-217}, zbl = {0979.47028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p201bwm} }
Kuo, Chung-Cheng; Shaw, Sen-Yen. On α-times integrated C-semigroups and the abstract Cauchy problem. Studia Mathematica, Tome 141 (2000) pp. 201-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i3p201bwm/
[000] [1] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. | Zbl 0637.44001
[001] [2] I. Cioranescu and G. Lumer, On K(t)-convoluted semigroups, in: Pitman Res. Notes Math. Ser. 324, Glasgow, 1994, 86-93. | Zbl 0828.34046
[002] [3] E. B. Davies and M. M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. 55 (1987), 181-208. | Zbl 0651.47026
[003] [4] R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal. 111 (1993), 44-61. | Zbl 0895.47029
[004] [5] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ. Press, 1985. | Zbl 0592.47034
[005] [6] M. Hieber, Laplace transforms and α-times integrated semigroups, Forum Math. 3 (1991), 595-612. | Zbl 0766.47013
[006] [7] C.-C. Kuo and S.-Y. Shaw, On strong and weak solutions of abstract Cauchy problems, preprint.
[007] [8] Y.-C. Li, Integrated C-semigroups and C-cosine functions of operators on locally convex spaces, Ph.D. dissertation, National Central Univ., 1991.
[008] [9] Y.-C. Li and S.-Y. Shaw, N-times integrated C-semigroups and the abstract Cauchy problem, Taiwanese J. Math. 1 (1997), 75-102. | Zbl 0892.47042
[009] [10] Y.-C. Li and S.-Y. Shaw, On generators of integrated C-semigroups and C-cosine functions, Semigroup Forum 47 (1993), 29-35. | Zbl 0804.47044
[010] [11] I. Miyadera, On the generators of exponentially bounded C-semigroups, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 239-242. | Zbl 0617.47032
[011] [12] I. Miyadera, M. Okubo and N. Tanaka, On integrated semigroups which are not exponentially bounded, ibid. 69 (1993), 199-204. | Zbl 0812.47041
[012] [13] I. Miyadera, M. Okubo and N. Tanaka, α-integrated semigroups and abstract Cauchy problems, Mem. School Sci. Engrg. Waseda Univ. 57 (1993), 267-289.
[013] [14] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111-155. | Zbl 0675.47030
[014] [15] N. Tanaka and I. Miyadera, Exponentially bounded C-semigroups and integrated semigroups, Tokyo J. Math. 12 (1989), 99-115. | Zbl 0702.47028
[015] [16] N. Tanaka and I. Miyadera, C-semigroups and the abstract Cauchy problem, J. Math. Anal. Appl. 170 (1992), 196-206. | Zbl 0812.47044