Axiomatic theory of spectrum III: semiregularities
Müller, Vladimír
Studia Mathematica, Tome 141 (2000), p. 159-169 / Harvested from The Polish Digital Mathematics Library

We introduce and study the notions of upper and lower semiregularities in Banach algebras. These notions generalize the previously studied notion of regularity - a class is a regularity if and only if it is both upper and lower semiregularity. Each semiregularity defines in a natural way a spectrum which satisfies a one-way spectral mapping property (the spectrum defined by a regularity satisfies the both-ways spectral mapping property).

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216795
@article{bwmeta1.element.bwnjournal-article-smv142i2p159bwm,
     author = {Vladim\'\i r M\"uller},
     title = {Axiomatic theory of spectrum III: semiregularities},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {159-169},
     zbl = {0977.47006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i2p159bwm}
}
Müller, Vladimír. Axiomatic theory of spectrum III: semiregularities. Studia Mathematica, Tome 141 (2000) pp. 159-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i2p159bwm/

[000] [G] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337. | Zbl 0477.47013

[001] [GL] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32. | Zbl 0203.45601

[002] [H1] R. Harte, On the exponential spectrum in Banach algebras, Proc. Amer. Math. Soc. 58 (1976), 114-118. | Zbl 0338.46043

[003] [H2] R. Harte, Fredholm theory relative to a Banach algebra homomorphism, Math. Z. 179 (1982), 431-436. | Zbl 0479.47032

[004] [H3] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, 1988. | Zbl 0636.47001

[005] [K] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966. | Zbl 0148.12601

[006] [KM] V. Kordula and V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109-128. | Zbl 0857.47001

[007] [KMR] V. Kordula, V. Müller and V. Rakočević, On the semi-Browder spectrum, Studia Math. 123 (1997), 1-13. | Zbl 0874.47007

[008] [MM] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, ibid. 119 (1996), 129-147. | Zbl 0857.47002

[009] [MW] A. M. Meléndez and A. Wawrzyńczyk, An approach to joint spectra, Ann. Polon. Math. 72 (1999), 131-144. | Zbl 0967.46033

[010] [O1] K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212. | Zbl 0277.47002

[011] [O2] K. K. Oberai, Spectral mapping theorem for essential spectra, Rev. Roumaine Math. Pures Appl. 25 (1980), 365-373. | Zbl 0439.47008

[012] [R1] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198. | Zbl 0602.47003

[013] [R2] V. Rakočević, On the essential spectrum, Zb. Rad. 6 (1992), 39-48. | Zbl 0913.47005

[014] [S] M. Schechter, On the essential spectrum of an arbitrary operator, J. Math. Anal. Appl. 13 (1966), 205-215. | Zbl 0147.12101

[015] [Z1] J. Zemánek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sect. A 86 (1986), 57-62. | Zbl 0617.47001

[016] [Z2] J. Zemánek, Approximation of the Weyl spectrum, ibid. 87 (1987), 177-180. | Zbl 0647.47001