Representations of the spaces C(N)Hk,p(N)
Albanese, A. ; Moscatelli, V.
Studia Mathematica, Tome 141 (2000), p. 135-148 / Harvested from The Polish Digital Mathematics Library

We give a representation of the spaces C(N)Hk,p(N) as spaces of vector-valued sequences and use it to investigate their topological properties and isomorphic classification. In particular, it is proved that C(N)Hk,2(N) is isomorphic to the sequence space sl2(l2), thereby showing that the isomorphy class does not depend on the dimension N if p=2.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216793
@article{bwmeta1.element.bwnjournal-article-smv142i2p135bwm,
     author = {A. Albanese and V. Moscatelli},
     title = {Representations of the spaces $C^$\infty$($\mathbb{R}$^N) $\cap$ H^{k,p}($\mathbb{R}$^N)$
            },
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {135-148},
     zbl = {0990.46014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i2p135bwm}
}
Albanese, A.; Moscatelli, V. Representations of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$
            . Studia Mathematica, Tome 141 (2000) pp. 135-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i2p135bwm/

[000] [A] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[001] [AA] A. A. Albanese, Montel subspaces of Fréchet spaces of Moscatelli type, Glasgow Math. J. 39 (1997), 345-350. | Zbl 0923.46011

[002] [AMM1] A. A. Albanese, G. Metafune and V. B. Moscatelli, Representations of the spaces Cm(Ω)Hk,p(Ω), Math. Proc. Cambridge Philos. Soc. 120 (1996), 489-498.

[003] [AMM2] A. A. Albanese, G. Metafune and V. B. Moscatelli, Representations of the spaces Cm(N)Hk,pN, in: Functional Analysis (Trier, 1994), S. Dierolf, S. Dineen and P. Domański (eds.), Walter de Gruyter, 1996, 11-20.

[004] [AMM3] A. A. Albanese, G. Metafune and V. B. Moscatelli, On the spaces Ck()Lp(), Arch. Math. (Basel) 68 (1997), 228-232. | Zbl 0876.46022

[005] [AM] A. A. Albanese and V. B. Moscatelli, A method of construction of Fréchet spaces, in: Functional Analysis, P. K. Jain (ed.), Narosa Publishing House, New Delhi, 1998, 1-8. | Zbl 0949.46002

[006] [BB] K. D. Bierstedt and J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of distinguished Köthe echelon spaces, Math. Nachr. 135 (1988), 149-180. | Zbl 0688.46001

[007] [B] J. Bonet, Intersections of Fréchet Schwartz spaces and their duals, Arch. Math. (Basel) 68 (1997), 320-325. | Zbl 0916.46001

[008] [BD] J. Bonet and S. Dierolf, Fréchet spaces of Moscatelli type, Rev. Mat. Univ. Complut. Madrid 2 (suppl.) (1989), 77-92. | Zbl 0757.46001

[009] [BT] J. Bonet and J. Taskinen, Non-distinguished Fréchet function spaces, Bull. Soc. Roy. Sci. Liège 58 (1989), 483-490. | Zbl 0711.46001

[010] [DK] S. Dierolf and Khin Aye Aye, On projective limits of Moscatelli type, in: Functional Analysis (Trier, 1994), S. Dierolf, S. Dineen and P. Domański (eds.), Walter de Gruyter, 1996, 105-118. | Zbl 0902.46001

[011] [MT] P. Mattila and J. Taskinen, Remarks on bases in a Fréchet function space, Rev. Mat. Univ. Complut. Madrid 6 (1993), 93-99. | Zbl 0814.46005

[012] [M] V. B. Moscatelli, Fréchet spaces without continuous norms and without bases, Bull. London Math. Soc. 12 (1980), 63-66. | Zbl 0407.46002

[013] [S] R. T. Seeley, Extension of C functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626. | Zbl 0127.28403

[014] [T1] J. Taskinen, A continuous surjection from the unit interval onto the unit square, Rev. Mat. Univ. Complut. Madrid 6 (1993), 101-120. | Zbl 0804.46027

[015] [T2] J. Taskinen, Examples of non-distinguished Fréchet spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 75-88. | Zbl 0632.46002

[016] [V1] M. Valdivia, Topics in Locally Convex Spaces, North-Holland Math. Stud. 67, 1982.

[017] [V2] M. Valdivia, A characterization of totally reflexive Fréchet spaces, Math. Z. 200 (1989), 327-346. | Zbl 0683.46008