We derive various integral representation formulas for a function minus a polynomial in terms of vector field gradients of the function of appropriately high order. Our results hold in the general setting of metric spaces, including those associated with Carnot-Carathéodory vector fields, under the assumption that a suitable to Poincaré inequality holds. Of particular interest are the representation formulas in Euclidean space and stratified groups, where polynomials exist and to Poincaré inequalities involving high order derivatives are known to hold. We apply the formulas to derive embedding theorems and potential type inequalities involving high order derivatives.
@article{bwmeta1.element.bwnjournal-article-smv142i2p101bwm, author = {Guozhen Lu and Richard Wheeden}, title = {High order representation formulas and embedding theorems on stratified groups and generalizations}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {101-133}, zbl = {0974.46039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i2p101bwm} }
Lu, Guozhen; Wheeden, Richard. High order representation formulas and embedding theorems on stratified groups and generalizations. Studia Mathematica, Tome 141 (2000) pp. 101-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i2p101bwm/
[000] [AH] D. Adams and L. Hedberg, Function Spaces and Potential Theory, Grund- lehren Math. Wiss. 314, Springer, New York, 1996.
[001] [B] B. Bojarski, Remarks on Sobolev imbedding theorems, in: Lecture Notes in Math. 1351, Springer, New York, 1988, 52-68.
[002] [BH] B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), 77-92. | Zbl 0810.46030
[003] [C1] S. Campanato, Proprietà di inclusione per spazi di Morrey, Ricerche Mat. 12 (1963), 67-86.
[004] [C2] S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa 17 (1963), 175-188.
[005] [C3] S. Campanato, Proprietà di una famiglia di spazi funzionali, ibid. 18 (1964), 137-160. | Zbl 0133.06801
[006] [CDG] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147-154. | Zbl 0893.35023
[007] [CW] S. Chanillo and R. L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985), 1191-1226. | Zbl 0575.42026
[008] [FP] C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, in: Proc. Conf. on Harmonic Analysis (Chicago 1980), W. Beckner et al. (eds.), Wads- worth, 1981, Vol. 2, 590-606.
[009] [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1980.
[010] [F] B. Franchi, Inégalités de Sobolev pour des champs de vecteurs lipschitziens, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 329-332. | Zbl 0734.46023
[011] [FGW] B. Franchi, C. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604. | Zbl 0822.46032
[012] [FHK] B. Franchi, P. Hajłasz and P. Koskela, Definitions of Sobolev classes on metric spaces, preprint, 1998. | Zbl 0938.46037
[013] [FL] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541. | Zbl 0552.35032
[014] [FLW1] B. Franchi, G. Z. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604. | Zbl 0820.46026
[015] [FLW2] B. Franchi, G. Z. Lu and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices 1996, no. 1, 1-14. | Zbl 0856.43006
[016] [FW] B. Franchi and R. L. Wheeden, Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type, J. Inequal. Appl. 3 (1999), 65-89. | Zbl 0934.46037
[017] [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. | Zbl 0562.35001
[018] [H] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. | Zbl 0859.46022
[019] [HK] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., to appear. | Zbl 0954.46022
[020] [He] L. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510. | Zbl 0283.26003
[021] [LLW] Y. Liu, G. Z. Lu and R. L. Wheeden, Several equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces, preprint, 1998.
[022] [L1] G. Z. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 (1992), 367-439. | Zbl 0804.35015
[023] [L2] G. Z. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, ibid. 10 (1994), 453-466. | Zbl 0860.35006
[024] [L3] G. Z. Lu, Local and global interpolation inequalities for the Folland-Stein Sobolev spaces and polynomials on the stratified groups, Math. Res. Lett. 4 (1997), 777-790. | Zbl 0910.26007
[025] [L4] G. Z. Lu, Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups, Acta Math. Sinica Ser. B, to appear. | Zbl 0973.46020
[026] [L5] G. Z. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields and applications, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 429-434. | Zbl 0842.46019
[027] [L6] G. Z. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type, Approx. Theory Appl. 14 (1998), 69-80. | Zbl 0916.46026
[028] [LP] G. Z. Lu and C. Pérez, to Poincaré inequalities for 0
[029] [LW1] G. Z. Lu and R. L. Wheeden, Poincaré inequalities, isoperimetric estimates and representation formulas on product spaces, Indiana Univ. Math. J. 47 (1998), 123-151. | Zbl 0931.26007
[030] [LW2] G. Z. Lu and R. L. Wheeden, An optimal representation formula for Carnot-Carathéodory vector fields, Bull. London Math. Soc. 30 (1998), 578-584. | Zbl 0931.31003
[031] [N] D. Nhieu, Extension of Sobolev spaces on the Heisenberg group, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 1559-1564. | Zbl 0841.43007
[032] [PW] C. Pérez and R. L. Wheeden, Uncertainty principle estimates for vector fields, to appear. | Zbl 0982.42010
[033] [SW] E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874. | Zbl 0783.42011
[034] [SWZ] E. Sawyer, R. L. Wheeden and S. V. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Anal. 5 (1996), 523-580. | Zbl 0873.42012
[035] [So1] S. L. Sobolev, On a boundary value problem for polyharmonic equations, Amer. Math. Soc. Transl. 33 (1963), 1-40.
[036] [So2] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Transl. Math. Monogr. 90, Amer. Math. Soc., Providence, RI, 1991.
[037] [S1] G. Stampacchia, The spaces , and interpolation, Ann. Scuola Norm. Sup. Pisa 19 (1965), 443-462.
[038] [S2] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. 1, 189-258. | Zbl 0151.15401
[039] [Z] W. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, New York, 1989.