General Besov and Triebel-Lizorkin spaces on domains with irregular boundary are compared with the completion, in those spaces, of the subset of infinitely continuously differentiable functions with compact support in the same domains. It turns out that the set of parameters for which those spaces coincide is strongly related to the fractal dimension of the boundary of the domains.
@article{bwmeta1.element.bwnjournal-article-smv142i1p47bwm, author = {Ant\'onio Caetano}, title = {Approximation by functions of compact support in Besov-Triebel-Lizorkin spaces on irregular domains}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {47-63}, zbl = {0985.46019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i1p47bwm} }
Caetano, António. Approximation by functions of compact support in Besov-Triebel-Lizorkin spaces on irregular domains. Studia Mathematica, Tome 141 (2000) pp. 47-63. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i1p47bwm/
[000] [1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer, Berlin, 1996.
[001] [2] A. M. Caetano, On fractals which are not so terrible, in preparation. | Zbl 1002.28010
[002] [3] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1985. | Zbl 0587.28004
[003] [4] W. Farkas and N. Jacob, Sobolev spaces on non-smooth domains and Dirichlet forms related to subordinate reflecting diffusions, preprint, 1999. | Zbl 0980.31005
[004] [5] A. Jonsson, Atomic decomposition of Besov spaces on closed sets, in: Function Spaces, Differential Operators and Nonlinear Analysis, H.-J. Schmeisser and H. Triebel (eds.), Teubner, Stuttgart, 1993, 285-289. | Zbl 0831.46028
[005] [6] A. Jonsson and H. Wallin, Function Spaces on Subsets of , Math. Reports 2, Harwood, London, 1984. | Zbl 0875.46003
[006] [7] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995. | Zbl 0819.28004
[007] [8] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166. | Zbl 0334.31004
[008] [9] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
[009] [10] H. Triebel, Fractals and Spectra, Birkhäuser, Basel, 1997.
[010] [11] H. Triebel, Decompositions of function spaces, in: Topics in Nonlinear Analysis, the Herbert Amann Anniversary Volume, Birkhäuser, Basel, 1999, 691-730. | Zbl 0920.46027
[011] [12] H. Triebel, Function spaces and Dirichlet problems in fractal domains, preprint, Jena, 1999.
[012] [13] H. Triebel and H. Winkelvoss, Intrinsic atomic characterizations of function spaces on domains, Math. Z. 221 (1996), 647-673. | Zbl 0843.46022
[013] [14] H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math. 73 (1991), 117-125. | Zbl 0793.46015