Using dimension group tools and Bratteli-Vershik representations of minimal Cantor systems we prove that a minimal Cantor system and a Sturmian subshift are topologically conjugate if and only if they are orbit equivalent and Kakutani equivalent.
@article{bwmeta1.element.bwnjournal-article-smv142i1p25bwm, author = {P. Dartnell and F. Durand and A. Maass}, title = {Orbit equivalence and Kakutani equivalence with Sturmian subshifts}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {25-45}, zbl = {0976.54041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i1p25bwm} }
Dartnell, P.; Durand, F.; Maass, A. Orbit equivalence and Kakutani equivalence with Sturmian subshifts. Studia Mathematica, Tome 141 (2000) pp. 25-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i1p25bwm/
[000] [BS] J. Berstel et P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc. 1 (1994), 175-189.
[001] [BH] M. Boyle and D. Handelmann, Orbit equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169-210.
[002] [BT] M. Boyle and J. Tomiyama, Bounded topological equivalence and C*-algebras, J. Math. Soc. Japan 50 (1998), 317-329. | Zbl 0940.37004
[003] [D] F. Durand, Contributions à l'étude des suites et systèmes dynamiques substitutifs, thèse de doctorat, Université d'Aix-Marseille II, 1996.
[004] [DHS] F. Durand, B. Host and C. F. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953-993. | Zbl 1044.46543
[005] [ES] E. G. Effros and C.-L. Shen, Approximately finite C*-algebras and continued fractions, Indiana Univ. Math. J. 29 (1980), 191-204. | Zbl 0457.46046
[006] [F] A. H. Forrest, K-groups associated with substitution minimal systems, Israel J. of Math. 98 (1997), 101-139. | Zbl 0891.46042
[007] [GPS] T. Giordano, I. Putnam and C. F. Skau, Topological orbit equivalence and C*-crossed products, J. Reine Angew. Math. 469 (1995), 51-111. | Zbl 0834.46053
[008] [GJ] R. Gjerde and O. Johansen, Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows, Ergodic Theory Dynam. Systems, to appear. | Zbl 0992.37008
[009] [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed.. Oxford, 1975.
[010] [HM] G. A. Hedlund and M. Morse, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. | Zbl 0022.34003
[011] [HPS] R. H. Herman, I. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), 827-864. | Zbl 0786.46053
[012] [H] B. Host, Dimension groups and substitution dynamical systems, preprint 13, Inst. Math. de Luminy, 1995.
[013] [K] H. Kesten, On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta Arithmetica 12 (1966), 193-212. | Zbl 0144.28902
[014] [MS] F. Mignosi et P. Séébold, Morphismes sturmiens et règles de Rauzy, J. Théorie Nombres Bordeaux 5 (1993), 221-233.
[015] [O] N. Ormes, Strong orbit realizations for minimal homeomorphisms, J. Anal. Math. 71 (1997), 103-133. | Zbl 0881.28013
[016] [P] B. Parvaix, Substitution invariant Sturmian bisequences, J. Théorie Nombres Bordeaux 11 (1999), 201-210. | Zbl 0978.11005
[017] [Q] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1988. | Zbl 1225.11001
[018] [S] C.-L. Shen, A note on the automorphism groups of simple dimension groups, Pacific J. Math. 89 (1980), 199-207. | Zbl 0471.46038
[019] [Su] F. Sugisaki, The relationship between entropy and strong orbit equivalence for the minimal homeomorphisms. II, Tokyo J. Math. 21 (1998), 311-351. | Zbl 1063.37500
[020] [V1] A. M. Vershik, A theorem on the Markov periodic approximation in ergodic theory, J. Soviet Math. 28 (1985), 667-674. | Zbl 0559.47006
[021] [V2] A. M. Vershik, Uniform algebraic approximation of shift and multiplication operators, Soviet Math. Dokl. 24 (1981), 97-100. | Zbl 0484.47005