Centralizers for subsets of normed algebras
Yood, Bertram
Studia Mathematica, Tome 141 (2000), p. 1-6 / Harvested from The Polish Digital Mathematics Library

Let G be the set of invertible elements of a normed algebra A with an identity. For some but not all subsets H of G we have the following dichotomy. For x ∈ A either cxc-1=x for all c ∈ H or supcxc-1:cH=. In that case the set of x ∈ A for which the sup is finite is the centralizer of H.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216786
@article{bwmeta1.element.bwnjournal-article-smv142i1p1bwm,
     author = {Bertram Yood},
     title = {Centralizers for subsets of normed algebras},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {1-6},
     zbl = {0977.46022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i1p1bwm}
}
Yood, Bertram. Centralizers for subsets of normed algebras. Studia Mathematica, Tome 141 (2000) pp. 1-6. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i1p1bwm/

[000] [1] B. Aupetit, Propriétés spectrales des algèbres de Banach, Springer, New York, 1979. | Zbl 0409.46054

[001] [2] J. A. Deddens, Another description of nest algebras, in: Hilbert Space Operators, Lecture Notes in Math. 693, Springer, New York, 1978, 77-86.

[002] [3] D. A. Herrero, A note on similarities of operators, Rev. Un. Mat. Argentina 36 (1990), 138-145. | Zbl 0781.47027

[003] [4] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ. 37, Amer. Math. Soc., Providence, 1956.

[004] [5] I. Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153-183. | Zbl 0034.16604

[005] [6] C. Le Page, Sur quelques conditions entraînant la commutativité dans les algèbres de Banach, C. R. Acad. Sci. Paris Sér. A 265 (1967), 235-237. | Zbl 0158.14102

[006] [7] C. J. Murphy, C*-algebras and Operator Theory, Academic Press, Boston, 1990.

[007] [8] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.