On cyclic α(·)-monotone multifunctions
Rolewicz, S.
Studia Mathematica, Tome 141 (2000), p. 263-272 / Harvested from The Polish Digital Mathematics Library

Let (X,d) be a metric space. Let Φ be a linear family of real-valued functions defined on X. Let Γ:X2Φ be a maximal cyclic α(·)-monotone multifunction with non-empty values. We give a sufficient condition on α(·) and Φ for the following generalization of the Rockafellar theorem to hold. There is a function f on X, weakly Φ-convex with modulus α(·), such that Γ is the weak Φ-subdifferential of f with modulus α(·), Γ(x)=Φ-αf|x.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216784
@article{bwmeta1.element.bwnjournal-article-smv141i3p263bwm,
     author = {S. Rolewicz},
     title = {On cyclic $\alpha$($\cdot$)-monotone multifunctions},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {263-272},
     zbl = {1012.46062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p263bwm}
}
Rolewicz, S. On cyclic α(·)-monotone multifunctions. Studia Mathematica, Tome 141 (2000) pp. 263-272. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p263bwm/

[000] R. Correa, A. Jofré and L. Thibault (1994), Subdifferential monotonicity as characterization of convex functions, Numer. Funct. Anal. Optim. 15, 531-535. | Zbl 0807.49015

[001] A. Jourani (1996), Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions, Control Cybernet. 25, 721-737. | Zbl 0862.49018

[002] D. Pallaschke and S. Rolewicz (1997), Foundations of Mathematical Optimization, Math. Appl. 388, Kluwer, Dordrecht. | Zbl 0887.49001

[003] R. T. Rockafellar (1970), On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33, 209-216. | Zbl 0199.47101

[004] R. T. Rockafellar (1980), Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 32, 257-280. | Zbl 0447.49009

[005] S. Rolewicz (1999), On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions, Studia Math. 133, 29-37. | Zbl 0920.47047