Let A be a Banach *-algebra which is a subalgebra of a Banach algebra B. In this paper, assuming that A is symmetric, various conditions are given which imply that A is inverse closed in B.
@article{bwmeta1.element.bwnjournal-article-smv141i3p251bwm, author = {Bruce Barnes}, title = {Symmetric Banach *-algebras: invariance of spectrum}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {251-261}, zbl = {0996.46021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p251bwm} }
Barnes, Bruce. Symmetric Banach *-algebras: invariance of spectrum. Studia Mathematica, Tome 141 (2000) pp. 251-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p251bwm/
[000] [B1] B. Barnes, The properties *-regularity and uniqueness of C*-norm in a general *-algebra, Trans. Amer. Math. Soc. 279 (1983), 841-859.
[001] [B2] B. Barnes, The spectrum of integral operators on Lebesgue space, J. Operator Theory 18 (1987), 115-132. | Zbl 0646.47033
[002] [B3] B. Barnes, A note on invariance of spectrum for symmetric Banach *-algebras, Proc. Amer. Math. Soc. 126 (1998), 3545-3547. | Zbl 0905.46034
[003] [BD] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. | Zbl 0271.46039
[004] [DLM] J. Daughtry, A. Lambert, and B. Weinstock, Invariance of spectrum for representations of C*-algebras on Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 189-198. | Zbl 0860.46038
[005] [DS] N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience Publ., New York, 1964.
[006] [G] D. Goldstein, Inverse closedness of C*-algebras in Banach algebras, Integral Equations Operator Theory 33 (1999), 172-174. | Zbl 0917.46055
[007] [L] P. D. Lax, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633-647. | Zbl 0057.34402
[008] [P1] T. Palmer, Classes of nonabelian, noncompact locally compact groups, Rocky Mountain J. Math. 8 (1978), 683-741. | Zbl 0396.22001
[009] [P2] T. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. 1, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, Cambridge, 1994.
[010] [PT] V. Pták, Banach algebras with involutions, Manuscripta Math. 6 (1972), 245-290. | Zbl 0229.46054
[011] [R] C. Rickart, Banach Algebras, Van Nostrand, 1960.