The paper begins with a self-contained and short development of Bárány’s theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads as follows: if , n=1,2,..., are families of closed convex sets in a bounded subset of a separable Banach space X such that there exists a positive with for , then there are with for all ; here denotes the collection of all x with distance at most ε to C.
@article{bwmeta1.element.bwnjournal-article-smv141i3p235bwm, author = {Ehrhard Behrends}, title = {On B\'ar\'any's theorems of Carath\'eodory and Helly type}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {235-250}, zbl = {0981.46014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p235bwm} }
Behrends, Ehrhard. On Bárány's theorems of Carathéodory and Helly type. Studia Mathematica, Tome 141 (2000) pp. 235-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p235bwm/
[000] [1] N. Alon and G. Kalai, Bounding the piercing number, Discrete Comput. Geom. 13 (1995), 245-256. | Zbl 0826.52006
[001] [2] M. Balaj and K. Nikodem, Remarks on Bárány's theorem and affine selections, preprint.
[002] [3] I. Bárány, A generalization of Carathéodory's theorem, Discrete Math. 40 (1982), 141-152. | Zbl 0492.52005
[003] [4] I. Bárány, Carathéodory's theorem, colourful and applicable, in: Bolyai Soc. Math. Stud. 6, János Bolyai Math. Soc., 1997, 11-21. | Zbl 0883.52004
[004] [5] E. Behrends and K. Nikodem, A selection theorem of Helly type and its applications, Studia Math. 116 (1995), 43-48. | Zbl 0847.52004
[005] [6] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Sci. Tech., 1993. | Zbl 0782.46019
[006] [7] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
[007] [8] J. Eckhoff, Helly, Radon, and Carathéodory type theorems, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), Elsevier, 1993, 389-448. | Zbl 0791.52009
[008] [9] R. C. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743. | Zbl 0286.46018
[009] [10] F. W. Levi, Eine Ergänzung zum Hellyschen Satze, Arch. Math. (Basel) 4 (1953), 222-224. | Zbl 0051.13701
[010] [11] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964). | Zbl 0141.12001
[011] [12] F. A. Valentine, Convex Sets, McGraw-Hill, 1964; reprinted by R. E. Krieger, 1976. | Zbl 0129.37203