We show that in the class of compact sets K in with an analytic parametrization of order m, the sets with Zariski dimension m are exactly those which admit a Bernstein (or a van der Corput-Schaake) type inequality for tangential derivatives of (the traces of) polynomials on K.
@article{bwmeta1.element.bwnjournal-article-smv141i3p221bwm, author = {M. Baran and W. Ple\'sniak}, title = {Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {221-234}, zbl = {0987.41005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p221bwm} }
Baran, M.; Pleśniak, W. Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities. Studia Mathematica, Tome 141 (2000) pp. 221-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p221bwm/
[000] [Ba1] M. Baran, Siciak’s extremal function of convex sets in , Ann. Polon. Math. 48 (1988), 275-280. | Zbl 0661.32023
[001] [Ba2] M. Baran, Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in , Michigan Math. J. 39 (1992), 395-404. | Zbl 0783.32009
[002] [Ba3] M. Baran, Complex equilibrium measure and Bernstein type theorems for compact sets in , Proc. Amer. Math. Soc. 123 (1995), 485-494. | Zbl 0813.32011
[003] [Ba4] M. Baran, Bernstein type theorems for compact sets in revisited, J. Approx. Theory 79 (1994), 190-198. | Zbl 0819.41013
[004] [Ba5] M. Baran, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994), 69-79. | Zbl 0824.41014
[005] [BaPl1] M. Baran and W. Pleśniak, Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves, Studia Math. 125 (1997), 83-96. | Zbl 0895.41011
[006] [BaPl2] M. Baran and W. Pleśniak, Polynomial inequalities on algebraic sets, this issue, 209-219. | Zbl 0987.41006
[007] [BeT] E. Bedford and B. A. Taylor, The complex equilibrium measure of a symmetric convex set in , Trans. Amer. Math. Soc. 294 (1986), 705-717. | Zbl 0595.32022
[008] [BeRi] R. Benedetti and J.-J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990.
[009] [Bern] S. N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mém. Acad. Roy. Belg. 4 (2) (1912), 1-103.
[010] [BLMT] L. Bos, N. Levenberg, P. Milman and B. A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of , Indiana Univ. Math. J. 44 (1995), 115-138. | Zbl 0824.41015
[011] [BLT] L. Bos, N. Levenberg and B. A. Taylor, Characterization of smooth, compact algebraic curves in , in: Topics in Complex Analysis, P. Jakóbczak and W. Pleśniak (eds.), Banach Center Publ. 31, Inst. Math. Polish Acad. Sci., Warszawa, 1995, 125-134. | Zbl 0834.41012
[012] [BoMi1] L. Bos and P. Milman, On Markov and Sobolev type inequalities on compact subsets in , in: Topics in Polynomials in One and Several Variables and Their Applications, Th. Rassias et al. (eds.), World Scientific, Singapore, 1992, 81-100.
[013] [BoMi2] L. Bos and P. Milman, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains, Geom. Funct. Anal. 5 (1995), 853-923. | Zbl 0848.46022
[014] [Bru] A. Brudnyi, A Bernstein-type inequality for algebraic functions, Indiana Univ. Math. J. 46 (1997), 93-116. | Zbl 0876.26015
[015] [CS1] J. G. van der Corput und G. Schaake, Ungleichungen für Polynome und trigonometrische Polynome, Compositio Math. 2 (1935), 321-361.
[016] [CS2] J. G. van der Corput und G. Schaake, Berichtigung zu: Ungleichungen für Polynome und trigonometrische Polynome, ibid. 3 (1936), 128. | Zbl 0013.10803
[017] [DŁS] Z. Denkowska, S. Łojasiewicz et S. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536. | Zbl 0435.32006
[018] [FeNa1] C. Fefferman and R. Narasimhan, Bernstein's inequality on algebraic curves, Ann. Inst. Fourier (Grenoble) 43 (1993), 1319-1348. | Zbl 0842.26013
[019] [FeNa2] C. Fefferman and R. Narasimhan, On the polynomial-like behavior of certain algebraic functions, ibid. 44 (1994), 1091-1179.
[020] [FeNa3] C. Fefferman and R. Narasimhan, A local Bernstein inequality on real algebraic varieties, Math. Z. 223 (1996), 673-692. | Zbl 0911.32011
[021] [Hir] H. Hironaka, Introduction to Real-Analytic Sets and Real-Analytic Maps, Istituto Matematico 'L. Tonelli', Pisa, 1973.
[022] [Jos] B. Josefson, On the equivalence between locally and globally polar sets for plurisubharmonic functions in , Ark. Mat. 16 (1978), 109-115. | Zbl 0383.31003
[023] [K] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991.
[024] [Lu] M. Lundin, The extremal plurisuhbarmonic function for the complement of convex subsets of , Michigan Math. J. 32 (1985), 196-201.
[025] [PaPl1] W. Pawłucki and W. Pleśniak, Markov’s inequality and functions on sets with polynomial cusps, Math. Ann. 275 (1986), 467-480. | Zbl 0579.32020
[026] [PaPl2] W. Pawłucki and W. Pleśniak, Extension of functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. | Zbl 0778.26010
[027] [Pl1] W. Pleśniak, Markov’s inequality and the existence of an extension operator for functions, J. Approx. Theory 61 (1990), 106-117.
[028] [Pl2] W. Pleśniak, Recent progress in multivariate Markov inequality, in: Approximation Theory (In Memory of A. K. Varma), N. K. Govil et al. (eds.), Pure Appl. Math. 212, Marcel Dekker, New York, 1998, 449-464. | Zbl 0984.41007
[029] [RoYo] N. Roytwarf and Y. Yomdin, Bernstein classes, Ann. Inst. Fourier (Grenoble) 47 (1997), 825-858.
[030] [Sa] A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR-Izv. 20 (1983), 493-502. | Zbl 0582.32023
[031] [Si1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. | Zbl 0111.08102
[032] [Si2] J. Siciak, Extremal plurisubharmonic functions in , Ann. Polon. Math. 39 (1981), 175-211. | Zbl 0477.32018