Polynomial inequalities on algebraic sets
Baran, M. ; Pleśniak, W.
Studia Mathematica, Tome 141 (2000), p. 209-219 / Harvested from The Polish Digital Mathematics Library

We give an estimate of Siciak’s extremal function for compact subsets of algebraic varieties in n (resp. n). As an application we obtain Bernstein-Walsh and tangential Markov type inequalities for (the traces of) polynomials on algebraic sets.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216780
@article{bwmeta1.element.bwnjournal-article-smv141i3p209bwm,
     author = {M. Baran and W. Ple\'sniak},
     title = {Polynomial inequalities on algebraic sets},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {209-219},
     zbl = {0987.41006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p209bwm}
}
Baran, M.; Pleśniak, W. Polynomial inequalities on algebraic sets. Studia Mathematica, Tome 141 (2000) pp. 209-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p209bwm/

[000] [Ba] M. Baran, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994), 69-79. | Zbl 0824.41014

[001] [BaPl1] M. Baran and W. Pleśniak, Markov’s exponent of compact sets in n, Proc. Amer. Math. Soc. 123 (1995), 2785-2791. | Zbl 0841.41011

[002] [BaPl2] M. Baran and W. Pleśniak, Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves, Studia Math. 125 (1997), 83-96. | Zbl 0895.41011

[003] [BaPl3] M. Baran and W. Pleśniak, Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities, this issue, 221-234. | Zbl 0987.41005

[004] [BLMT1] L. Bos, N. Levenberg, P. Milman and B. A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of N, Indiana Univ. Math. J. 44 (1995), 115-138. | Zbl 0824.41015

[005] [BLMT2] L. Bos, N. Levenberg, P. Milman and B. A. Taylor, Tangential Markov inequalities on real algebraic varieties, ibid. 47 (1998), 1257-1271. | Zbl 0938.32008

[006] [BLT] L. Bos, N. Levenberg and B. A. Taylor, Characterization of smooth, compact algebraic curves in 2, in: Topics in Complex Analysis, P. Jakóbczak and W. Pleśniak (eds.), Banach Center Publ. 31, Inst. Math., Polish Acad. Sci., Warszawa, 1995, 125-134. | Zbl 0834.41012

[007] [Bru] A. Brudnyi, A Bernstein-type inequality for algebraic functions, Indiana Univ. Math. J. 46 (1997), 93-116. | Zbl 0876.26015

[008] [FeNa1] C. Fefferman and R. Narasimhan, Bernstein's inequality on algebraic curves, Ann. Inst. Fourier (Grenoble) 43 (1993), 1319-1348. | Zbl 0842.26013

[009] [FeNa2] C. Fefferman and R. Narasimhan, On the polynomial-like behavior of certain algebraic functions, ibid. 44 (1994), 1091-1179.

[010] [FeNa3] C. Fefferman and R. Narasimhan, A local Bernstein inequality on real algebraic varieties, Math. Z. 223 (1996), 673-692. | Zbl 0911.32011

[011] [Gen] L. Gendre, Inégalité de Markov tangentielle locale sur les courbes algébriques de n, Université Paul Sabatier de Toulouse, preprint, 1998.

[012] [Iz] S. Izumi, A criterion for algebraicity on analytic set germs, Proc. Japan Acad. Ser. A 68 (1992), 307-309. | Zbl 0781.32012

[013] [Jos] B. Josefson, On the equivalence between locally and globally polar sets for plurisubharmonic functions in n, Ark. Mat. 16 (1978), 109-115. | Zbl 0383.31003

[014] [K] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991.

[015] [Ł] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991. | Zbl 0747.32001

[016] [PaPl] W. Pawłucki and W. Pleśniak, Markov’s inequality and C functions on sets with polynomial cusps, Math. Ann. 275 (1986), 467-480. | Zbl 0579.32020

[017] [Pl1] W. Pleśniak, Invariance of the L-regularity of compact sets in n under holomorphic mappings, Trans. Amer. Math. Soc. 246 (1978), 373-383. | Zbl 0409.32014

[018] [Pl2] W. Pleśniak, Compact subsets of n preserving Markov’s inequality, Mat. Vesnik 40 (1988), 295-300. | Zbl 0702.32007

[019] [Pl3] W. Pleśniak, Recent progress in multivariate Markov inequality, in: Approximation Theory, In Memory of A. K. Varma (N. K. Govil et al., eds.), Marcel Dekker, New York, 1998, 449-464. | Zbl 0984.41007

[020] [RoYo] N. Roytwarf and Y. Yomdin, Bernstein classes, Ann. Inst. Fourier (Grenoble) 47 (1997), 825-858.

[021] [Sa] A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR-Izv. 20 (1983), 493-502. | Zbl 0582.32023

[022] [Si1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. | Zbl 0111.08102

[023] [Si2] J. Siciak, Extremal plurisubharmonic functions in n, Ann. Polon. Math. 39 (1981), 175-211. | Zbl 0477.32018

[024] [Tou] J.-C. Tougeron, Idéaux de fonctions différentiables, Springer, Berlin, 1972. | Zbl 0251.58001