We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.
@article{bwmeta1.element.bwnjournal-article-smv141i3p201bwm, author = {Teresa Berm\'udez and Manuel Gonz\'alez and Mostafa Mbekhta}, title = {Operators with an ergodic power}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {201-208}, zbl = {0986.47006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p201bwm} }
Bermúdez, Teresa; González, Manuel; Mbekhta, Mostafa. Operators with an ergodic power. Studia Mathematica, Tome 141 (2000) pp. 201-208. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv141i3p201bwm/
[000] [1] T. Bermúdez, M. González and A. Martinón, On the poles of the local resolvent, Math. Nachr. 193 (1998), 19-26. | Zbl 0918.47008
[001] [2] T. Bermúdez, M. González and M. Mbekhta, Local ergodic theorems, Extracta Math. 13 (1997), 243-248.
[002] [3] T. Bermúdez and A. Martinón, On Neumann operators, J. Math. Anal. Appl. 200 (1996), 698-707. | Zbl 0870.47001
[003] [4] L. Burlando, A generalization of the uniform ergodic theorem to poles of arbitrary order, Studia Math. 122 (1997), 75-98. | Zbl 0869.47007
[004] [5] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968.
[005] [6] D. Drissi, On a theorem of Gelfand and its local generalizations, Studia Math. 123 (1997), 185-194. | Zbl 0894.47018
[006] [7] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. | Zbl 0063.01185
[007] [8] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, Berlin, 1985.
[008] [9] K. B. Laursen and M. Mbekhta, Operators with finite chain length and the ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. | Zbl 0849.47008
[009] [10] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
[010] [11] M. Radjabalipour, Decomposable operators, Bull. Iranian Math. Soc. 9 (1978), 1L-49L. | Zbl 0696.47032
[011] [12] R. Sine, A note on the ergodic properties of homeomorphisms, Proc. Amer. Math. Soc. 57 (1976), 169-172. | Zbl 0333.54027
[012] [13] A. C. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, New York, 1980. | Zbl 0501.46003
[013] [14] H.-D. Wacker, Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44 (1985), 539-546. | Zbl 0555.47008