Stable inverse-limit sequences and automatic continuity
Allan, Graham
Studia Mathematica, Tome 141 (2000), p. 99-107 / Harvested from The Polish Digital Mathematics Library

The elementary theory of stable inverse-limit sequences, introduced in stable inverse-limit sequences, is used to extend the 'stability lemma' of automatic continuity theory.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216778
@article{bwmeta1.element.bwnjournal-article-smv141i2p99bwm,
     author = {Graham Allan},
     title = {Stable inverse-limit sequences and automatic continuity},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {99-107},
     zbl = {1160.46322},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv141i2p99bwm}
}
Allan, Graham. Stable inverse-limit sequences and automatic continuity. Studia Mathematica, Tome 141 (2000) pp. 99-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv141i2p99bwm/

[000] [1] G. R. Allan, Elements of finite closed descent in a Banach algebra, J. London Math. Soc. (2) 7 (1973), 462-466. | Zbl 0274.46040

[001] [2] G. R. Allan, Stable inverse-limit sequences, with application to Fréchet algebras, Studia Math. 121 (1996), 277-308. | Zbl 0874.46048

[002] [3] G. R. Allan, Stable elements of Banach and Fréchet algebras, ibid. 129 (1998), 67-96. | Zbl 0909.46045

[003] [4] G. R. Allan, Inverse-limit sequences in functional analysis, to appear.

[004] [5] J. Esterle, Semi-normes sur C(K), Proc. London Math. Soc. (3) 36 (1978), 27-45.

[005] [6] J. Esterle, Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem, in: Contemp. Math 32, Amer. Math. Soc., 1984, 107-129. | Zbl 0569.46031

[006] [7] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, Cambridge, 1976. | Zbl 0313.47029