We study the convergence properties of Dirichlet series for a bounded linear operator T in a Banach space X. For an increasing sequence of positive numbers and a sequence of functions analytic in neighborhoods of the spectrum σ(T), the Dirichlet series for is defined by D[f,μ;z](T) = ∑n=0∞ e-μnz fn(T), z∈ ℂ. Moreover, we introduce a family of summation methods called Dirichlet methods and study the ergodic properties of Dirichlet averages for T in the uniform operator topology.
@article{bwmeta1.element.bwnjournal-article-smv141i1p69bwm, author = {Takeshi Yoshimoto}, title = {Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {69-83}, zbl = {0969.47007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv141i1p69bwm} }
Yoshimoto, Takeshi. Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces. Studia Mathematica, Tome 141 (2000) pp. 69-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv141i1p69bwm/
[000] [1] T. M. Apostol, Mathematical Analysis, Addison-Wesley, Reading, MA, 1974.
[001] [2] N. Dunford, Spectral theory I. Convergence to projection, Trans. Amer. Math. Soc. 54 (1943), 185-217. | Zbl 0063.01185
[002] [3] N. Dunford and J. T. Schwartz, Linear Operators I: General Theory, Pure Appl. Math., Interscience, New York, 1958. | Zbl 0084.10402
[003] [4] E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246-269. | Zbl 0063.02017
[004] [5] K. B. Laursen and M. Mbekhta, Operators with finite chain length and ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. | Zbl 0849.47008
[005] [6] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340. | Zbl 0252.47004
[006] [7] M. Lin, On the uniform ergodic theorem II, ibid. 46 (1974), 217-225.
[007] [8] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
[008] [9] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, Providence, 1939.
[009] [10] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, 1980. | Zbl 0501.46003
[010] [11] T. Yoshimoto, Uniform and strong ergodic theorems in Banach spaces, Illinois J. Math. 42 (1998), 525-543; Correction, ibid. 43 (1999), 800-801. | Zbl 0924.47005