Let A be a unital Banach function algebra with character space . For , let and be the ideals of functions vanishing at x and in a neighbourhood of x, respectively. It is shown that the hull of is connected, and that if x does not belong to the Shilov boundary of A then the set has an infinite connected subset. Various related results are given.
@article{bwmeta1.element.bwnjournal-article-smv141i1p53bwm, author = {J. Feinstein and D. Somerset}, title = {Non-regularity for Banach function algebras}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {53-68}, zbl = {0976.46036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv141i1p53bwm} }
Feinstein, J.; Somerset, D. Non-regularity for Banach function algebras. Studia Mathematica, Tome 141 (2000) pp. 53-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv141i1p53bwm/
[000] [1] R. J. Archbold and C. J. K. Batty, On factorial states of operator algebras, III, J. Operator Theory 15 (1986), 53-81. | Zbl 0592.46052
[001] [2] H. G. Dales and A. M. Davie, Quasianalytic Banach function algebras, J. Funct. Anal. 13 (1973), 28-50. | Zbl 0254.46027
[002] [3] J. Dixmier, C*-algebras, North-Holland, Amsterdam, 1982.
[003] [4] J. F. Feinstein and D. W. B. Somerset, Strong regularity for uniform algebras, in: Proc. 3rd Function Spaces Conference (Edwardsville, IL, 1998), Contemp. Math. 232, Amer. Math. Soc., 1999, 139-149. | Zbl 0933.46047
[004] [5] P. Gorkin and R. Mortini, Synthesis sets in , Indiana Univ. Math. J., to appear.
[005] [6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, NJ, 1962. | Zbl 0117.34001
[006] [7] J. L. Kelley, General Topology, Van Nostrand, Princeton, NJ, 1955.
[007] [8] M. M. Neumann, Commutative Banach algebras and decomposable operators, Monatsh. Math. 113 (1992), 227-243. | Zbl 0765.47010
[008] [9] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. 1, Cambridge Univ. Press, New York, 1994. | Zbl 0809.46052
[009] [10] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42. | Zbl 0077.31103
[010] [11] W. Rudin, Real and Complex Analysis, Tata McGraw-Hill, New Delhi, 1974. | Zbl 0278.26001
[011] [12] S. Sidney, More on high-order non-local uniform algebras, Illinois J. Math. 18 (1974), 177-192. | Zbl 0296.46050
[012] [13] D. W. B. Somerset, Minimal primal ideals in Banach algebras, Math. Proc. Cambridge Philos. Soc. 115 (1994), 39-52.
[013] [14] D. W. B. Somerset, Ideal spaces of Banach algebras, Proc. London Math. Soc. (3) 78 (1999), 369-400. | Zbl 1027.46058
[014] [15] G. Stolzenberg, The maximal ideal space of functions locally in an algebra, Proc. Amer. Math. Soc. 14 (1963), 342-345. | Zbl 0142.10102
[015] [16] E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, New York, 1971. | Zbl 0286.46049
[016] [17] J. Wermer, Banach algebras and analytic functions, Adv. Math. 1 (1961), 51-102. | Zbl 0112.07203
[017] [18] D. R. Wilken, Approximate normality and function algebras on the interval and the circle, in: Function Algebras (New Orleans, 1965), Scott-Foresman, Chicago, IL, 1966, 98-111.