Non-regularity for Banach function algebras
Feinstein, J. ; Somerset, D.
Studia Mathematica, Tome 141 (2000), p. 53-68 / Harvested from The Polish Digital Mathematics Library

Let A be a unital Banach function algebra with character space ΦA. For xΦA, let Mx and Jx be the ideals of functions vanishing at x and in a neighbourhood of x, respectively. It is shown that the hull of Jx is connected, and that if x does not belong to the Shilov boundary of A then the set yΦA:MxJy has an infinite connected subset. Various related results are given.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216773
@article{bwmeta1.element.bwnjournal-article-smv141i1p53bwm,
     author = {J. Feinstein and D. Somerset},
     title = {Non-regularity for Banach function algebras},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {53-68},
     zbl = {0976.46036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv141i1p53bwm}
}
Feinstein, J.; Somerset, D. Non-regularity for Banach function algebras. Studia Mathematica, Tome 141 (2000) pp. 53-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv141i1p53bwm/

[000] [1] R. J. Archbold and C. J. K. Batty, On factorial states of operator algebras, III, J. Operator Theory 15 (1986), 53-81. | Zbl 0592.46052

[001] [2] H. G. Dales and A. M. Davie, Quasianalytic Banach function algebras, J. Funct. Anal. 13 (1973), 28-50. | Zbl 0254.46027

[002] [3] J. Dixmier, C*-algebras, North-Holland, Amsterdam, 1982.

[003] [4] J. F. Feinstein and D. W. B. Somerset, Strong regularity for uniform algebras, in: Proc. 3rd Function Spaces Conference (Edwardsville, IL, 1998), Contemp. Math. 232, Amer. Math. Soc., 1999, 139-149. | Zbl 0933.46047

[004] [5] P. Gorkin and R. Mortini, Synthesis sets in H+C, Indiana Univ. Math. J., to appear.

[005] [6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, NJ, 1962. | Zbl 0117.34001

[006] [7] J. L. Kelley, General Topology, Van Nostrand, Princeton, NJ, 1955.

[007] [8] M. M. Neumann, Commutative Banach algebras and decomposable operators, Monatsh. Math. 113 (1992), 227-243. | Zbl 0765.47010

[008] [9] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. 1, Cambridge Univ. Press, New York, 1994. | Zbl 0809.46052

[009] [10] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42. | Zbl 0077.31103

[010] [11] W. Rudin, Real and Complex Analysis, Tata McGraw-Hill, New Delhi, 1974. | Zbl 0278.26001

[011] [12] S. Sidney, More on high-order non-local uniform algebras, Illinois J. Math. 18 (1974), 177-192. | Zbl 0296.46050

[012] [13] D. W. B. Somerset, Minimal primal ideals in Banach algebras, Math. Proc. Cambridge Philos. Soc. 115 (1994), 39-52.

[013] [14] D. W. B. Somerset, Ideal spaces of Banach algebras, Proc. London Math. Soc. (3) 78 (1999), 369-400. | Zbl 1027.46058

[014] [15] G. Stolzenberg, The maximal ideal space of functions locally in an algebra, Proc. Amer. Math. Soc. 14 (1963), 342-345. | Zbl 0142.10102

[015] [16] E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, New York, 1971. | Zbl 0286.46049

[016] [17] J. Wermer, Banach algebras and analytic functions, Adv. Math. 1 (1961), 51-102. | Zbl 0112.07203

[017] [18] D. R. Wilken, Approximate normality and function algebras on the interval and the circle, in: Function Algebras (New Orleans, 1965), Scott-Foresman, Chicago, IL, 1966, 98-111.