An integral criterion for being an Fourier multiplier is proved. It is applied in particular to suitable regular functions which depend on the product of variables.
@article{bwmeta1.element.bwnjournal-article-smv140i3p289bwm, author = {Micha\l\ Wojciechowski}, title = {A class of Fourier multipliers on H$^1$($\mathbb{R}$$^2$)}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {289-298}, zbl = {0982.42005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i3p289bwm} }
Wojciechowski, Michał. A class of Fourier multipliers on H¹(ℝ²). Studia Mathematica, Tome 141 (2000) pp. 289-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i3p289bwm/
[00000] [BBPW] E. Berkson, J. Bourgain, A. Pełczyński and M. Wojciechowski, Canonical Sobolev projections which are of weak type (1,1), Mem. Amer. Math. Soc., to appear. | Zbl 0990.42005
[00001] [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1977.
[00002] [FS] C. Fefferman and E. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[00003] [F] R. Fefferman, Some topics from harmonic analysis and partial differential equations, in: Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton Univ. Press, 1995, 175-210. | Zbl 0834.42010
[00004] [GR] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.
[00005] [Hö] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, 1983.
[00006] [MZ] J. Marcinkiewicz and A. Zygmund, Quelques inégalités pour les opérations linéaires, Fund. Math. 32 (1939), 115-121. | Zbl 65.0506.02
[00007] [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl 0207.13501
[00008] [T] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986. | Zbl 0621.42001
[00009] [W1] M. Wojciechowski, A Marcinkiewicz type multiplier theorem for spaces on product domains, this issue, 273-287. | Zbl 0982.42004
[00010] [W2] M. Wojciechowski, A necessary condition for weak type (1,1) of multiplier transforms, Canad. J. Math., to appear.