It is proved that if satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the space on the product domain . This implies an estimate of the norm of the multiplier transformation of m on as p→1. Precisely we get . This bound is the best possible in general.
@article{bwmeta1.element.bwnjournal-article-smv140i3p273bwm, author = {Micha\l\ Wojciechowski}, title = {A Marcinkiewicz type multiplier theorem for H$^1$ spaces on product domains}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {273-287}, zbl = {0982.42004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i3p273bwm} }
Wojciechowski, Michał. A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains. Studia Mathematica, Tome 141 (2000) pp. 273-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i3p273bwm/
[00000] E. Berkson, J. Bourgain, A. Pełczyński and M. Wojciechowski, Canonical Sobolev projections which are of weak type (1,1), submitted to Mem. Amer. Math. Soc. | Zbl 0990.42005
[00001] [B] J. Bourgain, On the behavior of the constant in the Littlewood-Paley inequality, in: Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1376, Springer, 1989, 202-208.
[00002] [C] L. Carleson, Two remarks on and BMO, Adv. Math. 22 (1976), 269-277. | Zbl 0357.46058
[00003] S. Y. A. Chang and R. Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), 455-468. | Zbl 0513.42019
[00004] S. Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. | Zbl 0557.42007
[00005] [D] N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. | Zbl 0056.34601
[00006] [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, 1977.
[00007] [FS] C. Fefferman and E. M. Stein, Hardy spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[00008] [F1] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. 126 (1987), 109-130. | Zbl 0644.42017
[00009] [F2] R. Fefferman, Some topics from harmonic analysis and partial differential equations, in: Essays on Fourier analysis in Honor of Elias M. Stein, Princeton Univ. Press, 1995, 175-210.
[00010] [Hö] L. Hö rmander, The Analysis of Linear Partial Differential Operators I, Springer, 1983.
[00011] [Lu] S. Z. Lu, Four Lectures on Real Spaces, World Sci., 1995.
[00012] [M] V. G. Maz'ya, Sobolev Spaces, Leningrad Univ. Press, 1985.
[00013] [Mu] P. F. X. Müller, Holomorphic martingales and interpolation between Hardy spaces, J. Anal. Math. 61 (1993), 327-337. | Zbl 0796.60051
[00014] [MC] C. A. McCarthy, , Israel J. Math. 5 (1967), 249-271.
[00015] [P] A. Pełczyński, Boundedness of the canonical projection for Sobolev spaces generated by finite families of linear differential operators, in: Analysis at Urbana 1 (Proceedings of Special Year in Modern Analysis at the Univ. of Illinois, 1986-87), London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press 1989, 395-415.
[00016] [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. | Zbl 0207.13501
[00017] [TW] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149. | Zbl 0472.46041
[00018] [T] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986. | Zbl 0621.42001
[00019] [X] Q. Xu, Some properties of the quotient space , Illinois J. Math. 37 (1993), 437-454. | Zbl 0792.46015