Let X be a normed space. A set A ⊆ X is approximately convexif d(ta+(1-t)b,A)≤1 for all a,b ∈ A and t ∈ [0,1]. We prove that every n-dimensional normed space contains approximately convex sets A with and , where ℋ denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0, we construct worst possible approximately convex sets in C[0,1] such that ℋ(A,Co(A))=(A)=D. Several results pertaining to the Hyers-Ulam stability theorem are also proved.
@article{bwmeta1.element.bwnjournal-article-smv140i3p213bwm, author = {S. Dilworth and Ralph Howard and James Roberts}, title = {On the size of approximately convex sets in normed spaces}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {213-241}, zbl = {1039.26009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i3p213bwm} }
Dilworth, S.; Howard, Ralph; Roberts, James. On the size of approximately convex sets in normed spaces. Studia Mathematica, Tome 141 (2000) pp. 213-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i3p213bwm/
[00000] [1] J. Bourgain and S. J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 (1988), 169-180. | Zbl 0654.46018
[00001] [2] R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, ibid. 34 (1981), 304-314. | Zbl 0475.47037
[00002] [3] E. Casini and P. L. Papini, Almost convex sets and best approximation, Ricerche Mat. 40 (1991), 299-310. | Zbl 0758.41033
[00003] [4] E. Casini and P. L. Papini, A counterexample to the infinity version of the Hyers and Ulam stability theorem, Proc. Amer. Math. Soc. 118 (1993), 885-890. | Zbl 0840.26015
[00004] [5] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86. | Zbl 0549.39006
[00005] [6] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1977.
[00006] [7] S. J. Dilworth, R. Howard and J. W. Roberts, Extremal approximately convex functions and estimating the size of convex hulls, Adv. Math. 148 (1999), 1-43. | Zbl 0949.26003
[00007] [8] J. W. Green, Approximately subharmonic functions, Duke Math. J. 19 (1952), 499-504. | Zbl 0047.29601
[00008] [9] D. H. Hyers, G. Isac and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998. | Zbl 0907.39025
[00009] [10] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821-828. | Zbl 0047.29505
[00010] [11] M. Laczkovich, The local stability of convexity, affinity and of the Jensen equation, Aequationes Math., to appear. | Zbl 0934.39013
[00011] [12] J.-O. Larsson, Studies in the geometrical theory of Banach spaces. Part 5: Almost convex sets in Banach spaces of type p,p>1, Ph.D. Thesis, Uppsala Univ., 1987.
[00012] [13] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991. | Zbl 0748.60004
[00013] [14] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin, 1977. | Zbl 0362.46013
[00014] [15] I. P. Natanson, Theory of Functions of a Real Variable, Vol. 1, Ungar, New York, 1961.
[00015] [16] C. T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993), 103-108. | Zbl 0823.26006
[00016] [17] G. Pisier, Sur les espaces qui ne contiennent pas de uniformément, Séminaire Maurey-Schwartz 1973-74, École Polytechnique, Paris, 1974.
[00017] [18] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1970. | Zbl 0193.18401
[00018] [19] S. J. Szarek, On the geometry of the Banach-Mazur compactum, in: Functional Analysis (Austin, TX, 1987/1989), Lecture Notes in Math. 1470, Springer, Berlin, 1991, 48-59. | Zbl 0759.46012