The Hilbert matrix acts on Hardy spaces by multiplication with Taylor coefficients. We find an upper bound for the norm of the induced operator.
@article{bwmeta1.element.bwnjournal-article-smv140i2p191bwm, author = {E. Diamantopoulos and Aristomenis Siskakis}, title = {Composition operators and the Hilbert matrix}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {191-198}, zbl = {0980.47029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i2p191bwm} }
Diamantopoulos, E.; Siskakis, Aristomenis. Composition operators and the Hilbert matrix. Studia Mathematica, Tome 141 (2000) pp. 191-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i2p191bwm/
[00000] [CS] J. A. Cima and D. A. Stegenga, Hankel operators on , in: Analysis in Urbana, Vol. I, London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press, 1989, 133-150.
[00001] [DU] P. L. Duren, Theory of Spaces, Academic Press, New York, 1970.
[00002] [CM] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995. | Zbl 0873.47017
[00003] [HLP] G. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, 1988. | Zbl 0634.26008
[00004] [PA] J. R. Partington, An Introduction to Hankel Operators, London Math. Soc. Student Texts 13, Cambridge Univ. Press, 1988.
[00005] [SH] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993.
[00006] [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1978.