Composition operators and the Hilbert matrix
Diamantopoulos, E. ; Siskakis, Aristomenis
Studia Mathematica, Tome 141 (2000), p. 191-198 / Harvested from The Polish Digital Mathematics Library

The Hilbert matrix acts on Hardy spaces by multiplication with Taylor coefficients. We find an upper bound for the norm of the induced operator.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216762
@article{bwmeta1.element.bwnjournal-article-smv140i2p191bwm,
     author = {E. Diamantopoulos and Aristomenis Siskakis},
     title = {Composition operators and the Hilbert matrix},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {191-198},
     zbl = {0980.47029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i2p191bwm}
}
Diamantopoulos, E.; Siskakis, Aristomenis. Composition operators and the Hilbert matrix. Studia Mathematica, Tome 141 (2000) pp. 191-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i2p191bwm/

[00000] [CS] J. A. Cima and D. A. Stegenga, Hankel operators on Hp, in: Analysis in Urbana, Vol. I, London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press, 1989, 133-150.

[00001] [DU] P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.

[00002] [CM] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995. | Zbl 0873.47017

[00003] [HLP] G. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, 1988. | Zbl 0634.26008

[00004] [PA] J. R. Partington, An Introduction to Hankel Operators, London Math. Soc. Student Texts 13, Cambridge Univ. Press, 1988.

[00005] [SH] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993.

[00006] [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1978.