Variational integrals for elliptic complexes
Giannetti, Flavia ; Verde, Anna
Studia Mathematica, Tome 141 (2000), p. 79-98 / Harvested from The Polish Digital Mathematics Library

We discuss variational integrals which are defined on differential forms associated with a given first order elliptic complex. This general framework provides us with better understanding of the concepts of convexity, even in the classical setting D'(n,)D'(n,n)curlD'(n,n×n)

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216757
@article{bwmeta1.element.bwnjournal-article-smv140i1p79bwm,
     author = {Flavia Giannetti and Anna Verde},
     title = {Variational integrals for elliptic complexes},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {79-98},
     zbl = {0968.58019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i1p79bwm}
}
Giannetti, Flavia; Verde, Anna. Variational integrals for elliptic complexes. Studia Mathematica, Tome 141 (2000) pp. 79-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i1p79bwm/

[00000] [A] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60. | Zbl 0815.30015

[00001] [BM-S] A. Baernstein and S. J. Montgomery-Smith, Some conjectures about integral means of ∂⨍ and ¯, to appear.

[00002] [Bu] D. L. Burkholder, Sharp inequalities for martingales and stochastic integrals, Astérisque 157-158 (1988), 75-94.

[00003] [C] H. Cartan, Differential Forms, Hermann, Paris , 1967. | Zbl 0213.37001

[00004] [CRW] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. | Zbl 0864.42009

[00005] [CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 569-645.

[00006] [D] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. | Zbl 0703.49001

[00007] [ET] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, New York, 1976. | Zbl 0322.90046

[00008] [FM] I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal. 30 (1999), 1355-1390. | Zbl 0940.49014

[00009] [GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. | Zbl 0361.35003

[00010] [I] T. Iwaniec, Nonlinear Cauchy-Riemann operators in n, Proc. Amer. Math. Soc., to appear. | Zbl 1113.35068

[00011] [IS1] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129-143. | Zbl 0766.46016

[00012] [IS2] T. Iwaniec and C. Sbordone, Div-curl fields of finite distortion, C. R. Acad. Sci. Paris Sér. I 327 (1998), 729-734. | Zbl 0916.30015

[00013] [IS3] T. Iwaniec and C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré, to appear.

[00014] [ISS] T. Iwaniec, C. Scott and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. 177 (1999), 37-115. | Zbl 0963.58003

[00015] [IV1] T. Iwaniec and A. Verde, Note on the operator L()=log||, J. Funct. Anal. 169 (1999), 391-420.

[00016] [IV2] T. Iwaniec and A. Verde, A study of Jacobians in Hardy-Orlicz spaces, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 539-570. | Zbl 0954.46018

[00017] [M] S. Müller, Higher integrability of determinants and weak convergence in L1, J. Reine Angew. Math. 412 (1990), 20-34.

[00018] [R] Yu. G. Reshetnyak, Stability theorems for mappings with bounded distortion, Siberian Math. J. 9 (1968), 499-512. | Zbl 0176.03503

[00019] [Š] V. Šverák, Rank one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 185-189. | Zbl 0777.49015

[00020] [St1] E. M. Stein, Note on the class L log L, Studia Math. 32 (1969), 305-310. | Zbl 0182.47803

[00021] [St2] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, 1993.

[00022] [W] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318-344. | Zbl 0181.11501