The splitting problem is studied for short exact sequences consisting of countable projective limits of DFN-spaces (*) 0 → F → X → G → 0, where F or G are isomorphic to the space of distributions D'. It is proved that every sequence (*) splits for F ≃ D' iff G is a subspace of D' and that, for ultrabornological F, every sequence (*) splits for G ≃ D' iff F is a quotient of D'
@article{bwmeta1.element.bwnjournal-article-smv140i1p57bwm, author = {P. Doma\'nski and D. Vogt}, title = {A splitting theory for the space of distributions}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {57-77}, zbl = {0973.46067}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i1p57bwm} }
Domański, P.; Vogt, D. A splitting theory for the space of distributions. Studia Mathematica, Tome 141 (2000) pp. 57-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i1p57bwm/
[00000] [DW] M. De Wilde, Closed Graph Theorems and Webbed Spaces, Pitman Res. Notes in Math. 19, Pitman, London, 1978. | Zbl 0373.46007
[00001] [D1] P. Domański, On the splitting of twisted sums, and the three space problem for local convexity, Studia Math. 82 (1985), 155-189. | Zbl 0582.46004
[00002] [D2] P. Domański, Twisted sums of Banach and nuclear spaces, Proc. Amer. Math. Soc. 97 (1986), 237-243. | Zbl 0595.46002
[00003] [DV1] P. Domański and D. Vogt, A splitting theorem for the space of smooth functions, J. Funct. Anal. 153 (1998), 203-248. | Zbl 0912.46026
[00004] [DV2] P. Domański and D. Vogt, Distributional complexes split for positive dimensions, J. Reine Angew. Math. 522 (2000), to appear. | Zbl 0962.46026
[00005] [F1] K. Floret, Lokalkonvexe Sequenzen mit kompakten Abbildungen, ibid. 247 (1971), 155-195. | Zbl 0209.43001
[00006] [F2] K. Floret, Some aspects of the the theory of locally convex inductive limits, in: Functional Analysis: Surveys and Recent Results II, K. D. Bierstedt and B.Fuchssteiner (eds.), North-Holland, Amsterdam, 1980, 205-237.
[00007] [G] M. I. Graev, Theory of topological groups I, Uspekhi Mat. Nauk 5 (1950), no. 2, 3-56 (in Russian). | Zbl 0037.01301
[00008] [Gr] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil. Math. 3 (1954), 57-123.
[00009] [J] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1980.
[00010] [MV] R. Meise and D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
[00011] [P] V. P. Palamodov, Linear Differential Operators with Constant Coefficients, Nauka, Moscow, 1967 (in Russian); English transl.: Springer, Berlin, 1971. | Zbl 0191.43401
[00012] [ P1] V. P. Palamodov, Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26 (1971), no. 1, 3-66 (in Russian); English transl.: Russian Math. Surveys 26 (1971), no. 1, 1-64.
[00013] [P2] V. P. Palamodov, The projective limit functor in the category of linear topological spaces, Mat. Sb. 75 (1968), 567-603 (in Russian); English transl.: Math. USSR-Sb. 4 (1968), 529-558. | Zbl 0175.41801
[00014] [Re1] V. S. Retakh, The subspaces of a countable inductive limit, Dokl. Akad. Nauk SSSR 194 (1970), 1277-1279 (in Russian); English transl.: Soviet Math. Dokl. 11 (1970), 1384-1386.
[00015] [Re2] V. S. Retakh, On the dual of a subspace of a countable inductive limit, Dokl. Akad. Nauk SSSR 184 (1969), 44-45 (in Russian); English transl.: Soviet Math. Dokl. 10 (1969), 39-41.
[00016] [RD] W. Roelcke and S. Dierolf, On the three space problem for topological vector spaces, Collect. Math. 32 (1981), 13-35. | Zbl 0489.46002
[00017] [T] N. N. Tarkhanov, Complexes of Differential Operators, Kluwer, Dordrecht, 1995. | Zbl 0852.58076
[00018] [V0] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. | Zbl 0337.46015
[00019] [V1] D. Vogt, On the functors for Fréchet spaces, Studia Math. 85 (1987), 163-197. | Zbl 0651.46001
[00020] [V2] D. Vogt, Lectures on projective spectra of DF-spaces, seminar lectures, AG Funktionalanalysis (1987), Düsseldorf-Wuppertal.
[00021] [V3] D. Vogt, Topics on projective spectra of LB-spaces, in: Advances in the Theory of Fréchet Spaces (Istanbul, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 287, Kluwer, Dordrecht, 1989, 11-27.
[00022] [V4] D. Vogt, Some results on continuous linear maps between Fréchet spaces, in: Functional Analysis: Surveys and Recent Results III, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, Amsterdam, 1984, 349-381.
[00023] [V5] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. L. Zapata (ed.), Lecture Notes in Pure and Appl. Math. 83, Marcel Dekker, New York, 1983, 405-443.
[00024] [V6] D. Vogt, Subspaces and quotient spaces of s, in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, Amsterdam, 1977, 167-187.
[00025] [W] J. Wengenroth, Acyclic inductive spectra of Fréchet spaces, Studia Math. 120 (1996), 247-258. | Zbl 0863.46002