Let be a random walk drifting to -∞. We obtain an asymptotic expansion for the distribution of the supremum of which takes into account the influence of the roots of the equation being the underlying distribution. An estimate, of considerable generality, is given for the remainder term by means of submultiplicative weight functions. A similar problem for the stationary distribution of an oscillating random walk is also considered. The proofs rely on two general theorems for Laplace transforms.
@article{bwmeta1.element.bwnjournal-article-smv140i1p41bwm, author = {M. Sgibnev}, title = {An asymptotic expansion for the distribution of the supremum of a random walk}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {41-55}, zbl = {0962.60019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i1p41bwm} }
Sgibnev, M. An asymptotic expansion for the distribution of the supremum of a random walk. Studia Mathematica, Tome 141 (2000) pp. 41-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i1p41bwm/
[00000] [1] G. Alsmeyer, On generalized renewal measures and certain first passage times, Ann. Probab. 20 (1991), 1229-1247. | Zbl 0759.60088
[00001] [2] J. Bertoin and R. A. Doney, Some asymptotic results for transient random walks, J. Appl. Probab. 28 (1996), 206-226. | Zbl 0854.60069
[00002] [3] A. A. Borovkov, Stochastic Processes in Queueing Theory, Springer, New York, 1976. | Zbl 0319.60057
[00003] [4] A. A. Borovkov, A limit distribution for an oscillating random walk, Theory Probab. Appl. 25 (1980), 649-651.
[00004] [5] A. A. Borovkov and D. A. Korshunov, Probabilities of large deviations for one-dimensional Markov chains. I. Stationary distributions, Theory Probab. Appl. 41 (1996), 1-24. | Zbl 0888.60025
[00005] [6] P. Embrechts and N. Veraverbeke, Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance Math. Econom. 1 (1982), 55-72. | Zbl 0518.62083
[00006] [7] W. Feller, An Introduction to Probability Theory and Its Applications II, Wiley, New York, 1966. | Zbl 0138.10207
[00007] [8] B. B. van der Genugten, Asymptotic expansions in renewal theory, Compositio Math. 21 (1969), 331-342. | Zbl 0211.21801
[00008] [9] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Colloq. Publ. 31, Amer. Math. Soc., Providence, 1957. | Zbl 0078.10004
[00009] [10] S. Janson, Moments for first passage times, the minimum, and related quantities for random walks with positive drift, Adv. Appl. Probab. 18 (1986), 865-879. | Zbl 0612.60060
[00010] [11] J. H. B. Kemperman, The oscillating random walk, Stochastic Process. Appl. 2 (1974), 1-29. | Zbl 0326.60081
[00011] [12] J. Kiefer and J. Wolfowitz, On the characteristics of the general queueing process, with applications to random walk, Ann. Math. Statist. 27 (1956), 147-161. | Zbl 0070.36602
[00012] [13] V. I. Lotov, Asymptotics of the distribution of the supremum of consecutive sums, Mat. Zametki 38 (1985), 668-678 (in Russian).
[00013] [14] B. A. Rogozin and M. S. Sgibnev, Banach algebras of measures on the line, Siberian Math. J. 21 (1980), 265-273. | Zbl 0457.46024
[00014] [15] M. S. Sgibnev, On the distribution of the supremum of sums of independent summands with negative drift, Mat. Zametki 22 (1977), 763-770 (in Russian).
[00015] [16] M. S. Sgibnev, Submultiplicative moments of the supremum of a random walk with negative drift, Statist. Probab. Lett. 32 (1997), 377-383. | Zbl 0903.60055
[00016] [17] M. S. Sgibnev, Equivalence of two conditions on singular components, ibid. 40 (1998), 127-131. | Zbl 0942.60023
[00017] [18] M. S. Sgibnev, On the distribution of the supremum in the presence of roots of the characteristic equation, Teor. Veroyatnost. i Primenen. 43 (1998), 383-390 (in Russian).
[00018] [19] R. L. Tweedie, The existence of moments for stationary Markov chains, J. Appl. Probab. 20 (1983), 191-196. | Zbl 0513.60067
[00019] [20] N. Veraverbeke, Asymptotic behavior of Wiener-Hopf factors of a random walk, Stochastic Process. Appl. 5 (1977), 27-37. | Zbl 0353.60073