Let P(D) be a partial differential operator with constant coefficients which is surjective on the space A(Ω) of real analytic functions on an open set . Then P(D) admits shifted (generalized) elementary solutions which are real analytic on an arbitrary relatively compact open set ω ⊂ ⊂ Ω. This implies that any localization of the principal part is hyperbolic w.r.t. any normal vector N of ∂Ω which is noncharacteristic for . Under additional assumptions must be locally hyperbolic.
@article{bwmeta1.element.bwnjournal-article-smv140i1p15bwm, author = {Michael Langenbruch}, title = {Localizations of partial differential operators and surjectivity on real analytic functions}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {15-40}, zbl = {0977.35035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i1p15bwm} }
Langenbruch, Michael. Localizations of partial differential operators and surjectivity on real analytic functions. Studia Mathematica, Tome 141 (2000) pp. 15-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i1p15bwm/
[00000] [1] K. G. Andersson, Propagation of analyticity of solutions of partial differential equations with constant coefficients, Ark. Mat. 8 (1971), 277-302. | Zbl 0211.40502
[00001] [2] K. G. Andersson, Global solvability of partial differential equations in the space of real analytic functions, in: Analyse Fonctionnelle et Applications (Coll. Analyse, Rio de Janeiro, August 1972), Actualités Sci. Indust. 1367, Hermann, Paris, 1975, 1-4.
[00002] [3] A. Andreotti and M. Nacinovich, Analytic Convexity and the Principle of Phragmén-Lindelöf, Scuola Norm. Sup., Pisa, 1980. | Zbl 0458.35004
[00003] [4] G. Bengel, Das Weylsche Lemma in der Theorie der Hyperfunktionen, Math. Z. 96 (1967), 373-392.
[00004] [5] J. Bochnak, M. Coste et M. F. Roy, Géométrie Algébrique Réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987.
[00005] [6] J. M. Bony, Extensions du théorème de Holmgren, Sém. Goulaouic-Schwartz, Exp. 17, Centre Math., École Polytechnique, Palaiseau, 1976, 13 pp. | Zbl 0336.35003
[00006] [7] J. M. Bony, Propagation of analytic and differentiable singularities for solutions of partial differential equations, Publ. Res. Inst. Math. Sci. Suppl. 12 (1976/77), 5-17.
[00007] [8] J. M. Bony and P. Schapira, Propagation des singularités analytiques pour les solutions des équations aux dérivées partielles, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, 81-140. | Zbl 0312.35064
[00008] [9] R. W. Braun, The surjectivity of a constant coefficient homogeneous differential operator on the real analytic functions and the geometry of its symbol, ibid. 45 (1995), 223-249. | Zbl 0816.35007
[00009] [10] R. W. Braun, R. Meise and D. Vogt, Application of the projective limit functor to convolution and partial differential equations, in: T. Terzioğlu (ed.), Advances in the Theory of Fréchet Spaces, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 287, Kluwer, 1989, 29-46. | Zbl 0726.46022
[00010] [11] R. W. Braun, R. Meise and D. Vogt, Characterization of the linear partial differential operators with constant coefficients, which are surjective on non-quasianalytic classes of Roumieu type on, Math. Nachr 168 (1994), 19-54. | Zbl 0848.35023
[00011] [12] L. Cattabriga ed E. de Giorgi, Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital. (4) 4 (1971), 1015-1027.
[00012] [13] M. L. de Cristoforis, Soluzioni con lacune di certi operatori differenziali lineari, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 8 (1984), 137-142.
[00013] [14] J. Fehrman, Hybrids between hyperbolic and elliptic differential operators with constant coefficients, Ark. Mat. 13 (1975), 209-235. | Zbl 0313.35009
[00014] [15] L. Gårding, Local hyperbolicity, Israel J. Math. 13 (1972), 65-81.
[00015] [16] A. Grigis, P. Schapira et J. Sjöstrand, Propagation de singularités analytiques pour les solutions des opérateurs à caractéristiques multiples, C. R. Acad. Sci. Paris Sér. I 293 (1981), 397-400. | Zbl 0475.58018
[00016] [17] N. Hanges, Propagation of analyticity along real bicharacteristics, Duke Math. J. 48 (1981), 269-277. | Zbl 0471.35013
[00017] [18] N. Hanges and J. Sjöstrand, Propagation of analyticity for a class of non-micro-characteristic operators, Ann. of Math. 116 (1982), 559-577. | Zbl 0537.35007
[00018] [19] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24 (1971), 671-704. | Zbl 0226.35019
[00019] [20] L. Hörmander, On the singularities of solutions of partial differential equations with constant coefficients, Israel J. Math. 13 (1972), 82-105.
[00020] [21] L. Hörmander, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math. 21 (1973), 151-183. | Zbl 0282.35015
[00021] [22] L. Hörmander, The Analysis of Linear Partial Differential Operators I,II, Grundlehren Math. Wiss. 256, 257, Springer, Berlin, 1983.
[00022] [23] A. Kaneko, On the global existence of real analytic solutions of linear partial differential equations on unbounded domain, J. Fac. Sci. Tokyo Sect. IA Math. 32 (1985), 319-372. | Zbl 0583.35013
[00023] [24] M. Kashiwara and T. Kawai, Microhyperbolic pseudodifferential operators I, J. Math. Soc. Japan 27 (1975), 359-404. | Zbl 0305.35066
[00024] [25] T. Kawai, On the global existence of real analytic solutions of linear differential equations I, ibid. 24 (1972), 481-517. | Zbl 0234.35012
[00025] [26] M. Langenbruch, Surjective partial differential operators on spaces of ultradifferentiable functions of Roumieu type, Results Math. 29 (1996), 254-275. | Zbl 0859.35019
[00026] [27] M. Langenbruch, Continuation of Gevrey regularity for solutions of partial differential operators, in: S. Dierolf, S. Dineen and P. Domański (eds.), Functional Analysis, Proc. First Workshop at Trier University, de Gruyter, 1996, 249-280. | Zbl 0886.35031
[00027] [28] M. Langenbruch, Surjective partial differential operators on Gevrey classes and their localizations at infinity, Linear Topol. Spaces Complex Anal. 3 (1997), 95-111,
[00028] [29] M. Langenbruch, Surjectivity of partial differential operators in Gevrey classes and extension of regularity, Math. Nachr. 196 (1998), 103-140. | Zbl 0933.35044
[00029] [30] M. Langenbruch, Extension of analyticity for solutions of partial differential operators, Note Mat. 17 (1997), 29-59. | Zbl 0976.35011
[00030] [31] M. Langenbruch, Surjective partial differential operators on spaces of real analytic functions, preprint.
[00031] [32] P. Laubin, Propagation des singularités analytiques pour des opérateurs à caractéristiques involutives de multiplicité variable, Portugal. Math. 41 (1982), 83-90. | Zbl 0551.58034
[00032] [33] P. Laubin, Analyse microlocale des singularités analytiques, Bull. Soc. Roy. Sci. Liège 52 (1983), 103-212. | Zbl 0567.58028
[00033] [34] O. Liess, Necessary and sufficient conditions for propagation of singularities for systems of partial differential equations with constant coefficients, Comm. Partial Differential Equations 8 (1983), 89-198. | Zbl 0524.35021
[00034] [35] R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, Braunschweig, 1992.
[00035] [36] T. Miwa, On the global existence of real analytic solutions of systems of linear differential equations with constant coefficients, Proc. Japan Acad. 49 (1973), 500-502. | Zbl 0273.35013
[00036] [37] L. C. Piccinini, Non surjectivity of the Cauchy-Riemann operator on the space of the analytic functions on , Boll. Un. Mat. Ital. (4) 7 (1973), 12-28. | Zbl 0264.35003
[00037] [38] J. Sjöstrand, Singularités Analytiques Microlocales, Astérisque 95 (1982), 1-166. | Zbl 0524.35007
[00038] [39] G. Zampieri, Operatori differenziali a coefficienti costanti di tipo iperbolico-(ipo) ellittico, Rend. Sem. Mat. Univ. Padova 72 (1984), 27-44.
[00039] [40] G. Zampieri, Propagation of singularity and existence of real analytic solutions of locally hyperbolic equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), 373-390. | Zbl 0595.35077
[00040] [41] G. Zampieri, An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations, Boll. Un. Mat. Ital. B (6) 5 (1986), 361-392. | Zbl 0624.35011