Localizations of partial differential operators and surjectivity on real analytic functions
Langenbruch, Michael
Studia Mathematica, Tome 141 (2000), p. 15-40 / Harvested from The Polish Digital Mathematics Library

Let P(D) be a partial differential operator with constant coefficients which is surjective on the space A(Ω) of real analytic functions on an open set Ωn. Then P(D) admits shifted (generalized) elementary solutions which are real analytic on an arbitrary relatively compact open set ω ⊂ ⊂ Ω. This implies that any localization Pm,Θ of the principal part Pm is hyperbolic w.r.t. any normal vector N of ∂Ω which is noncharacteristic for Pm,Θ. Under additional assumptions Pm must be locally hyperbolic.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216753
@article{bwmeta1.element.bwnjournal-article-smv140i1p15bwm,
     author = {Michael Langenbruch},
     title = {Localizations of partial differential operators and surjectivity on real analytic functions},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {15-40},
     zbl = {0977.35035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i1p15bwm}
}
Langenbruch, Michael. Localizations of partial differential operators and surjectivity on real analytic functions. Studia Mathematica, Tome 141 (2000) pp. 15-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i1p15bwm/

[00000] [1] K. G. Andersson, Propagation of analyticity of solutions of partial differential equations with constant coefficients, Ark. Mat. 8 (1971), 277-302. | Zbl 0211.40502

[00001] [2] K. G. Andersson, Global solvability of partial differential equations in the space of real analytic functions, in: Analyse Fonctionnelle et Applications (Coll. Analyse, Rio de Janeiro, August 1972), Actualités Sci. Indust. 1367, Hermann, Paris, 1975, 1-4.

[00002] [3] A. Andreotti and M. Nacinovich, Analytic Convexity and the Principle of Phragmén-Lindelöf, Scuola Norm. Sup., Pisa, 1980. | Zbl 0458.35004

[00003] [4] G. Bengel, Das Weylsche Lemma in der Theorie der Hyperfunktionen, Math. Z. 96 (1967), 373-392.

[00004] [5] J. Bochnak, M. Coste et M. F. Roy, Géométrie Algébrique Réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987.

[00005] [6] J. M. Bony, Extensions du théorème de Holmgren, Sém. Goulaouic-Schwartz, Exp. 17, Centre Math., École Polytechnique, Palaiseau, 1976, 13 pp. | Zbl 0336.35003

[00006] [7] J. M. Bony, Propagation of analytic and differentiable singularities for solutions of partial differential equations, Publ. Res. Inst. Math. Sci. Suppl. 12 (1976/77), 5-17.

[00007] [8] J. M. Bony and P. Schapira, Propagation des singularités analytiques pour les solutions des équations aux dérivées partielles, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, 81-140. | Zbl 0312.35064

[00008] [9] R. W. Braun, The surjectivity of a constant coefficient homogeneous differential operator on the real analytic functions and the geometry of its symbol, ibid. 45 (1995), 223-249. | Zbl 0816.35007

[00009] [10] R. W. Braun, R. Meise and D. Vogt, Application of the projective limit functor to convolution and partial differential equations, in: T. Terzioğlu (ed.), Advances in the Theory of Fréchet Spaces, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 287, Kluwer, 1989, 29-46. | Zbl 0726.46022

[00010] [11] R. W. Braun, R. Meise and D. Vogt, Characterization of the linear partial differential operators with constant coefficients, which are surjective on non-quasianalytic classes of Roumieu type on, Math. Nachr 168 (1994), 19-54. | Zbl 0848.35023

[00011] [12] L. Cattabriga ed E. de Giorgi, Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital. (4) 4 (1971), 1015-1027.

[00012] [13] M. L. de Cristoforis, Soluzioni con lacune di certi operatori differenziali lineari, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 8 (1984), 137-142.

[00013] [14] J. Fehrman, Hybrids between hyperbolic and elliptic differential operators with constant coefficients, Ark. Mat. 13 (1975), 209-235. | Zbl 0313.35009

[00014] [15] L. Gårding, Local hyperbolicity, Israel J. Math. 13 (1972), 65-81.

[00015] [16] A. Grigis, P. Schapira et J. Sjöstrand, Propagation de singularités analytiques pour les solutions des opérateurs à caractéristiques multiples, C. R. Acad. Sci. Paris Sér. I 293 (1981), 397-400. | Zbl 0475.58018

[00016] [17] N. Hanges, Propagation of analyticity along real bicharacteristics, Duke Math. J. 48 (1981), 269-277. | Zbl 0471.35013

[00017] [18] N. Hanges and J. Sjöstrand, Propagation of analyticity for a class of non-micro-characteristic operators, Ann. of Math. 116 (1982), 559-577. | Zbl 0537.35007

[00018] [19] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24 (1971), 671-704. | Zbl 0226.35019

[00019] [20] L. Hörmander, On the singularities of solutions of partial differential equations with constant coefficients, Israel J. Math. 13 (1972), 82-105.

[00020] [21] L. Hörmander, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math. 21 (1973), 151-183. | Zbl 0282.35015

[00021] [22] L. Hörmander, The Analysis of Linear Partial Differential Operators I,II, Grundlehren Math. Wiss. 256, 257, Springer, Berlin, 1983.

[00022] [23] A. Kaneko, On the global existence of real analytic solutions of linear partial differential equations on unbounded domain, J. Fac. Sci. Tokyo Sect. IA Math. 32 (1985), 319-372. | Zbl 0583.35013

[00023] [24] M. Kashiwara and T. Kawai, Microhyperbolic pseudodifferential operators I, J. Math. Soc. Japan 27 (1975), 359-404. | Zbl 0305.35066

[00024] [25] T. Kawai, On the global existence of real analytic solutions of linear differential equations I, ibid. 24 (1972), 481-517. | Zbl 0234.35012

[00025] [26] M. Langenbruch, Surjective partial differential operators on spaces of ultradifferentiable functions of Roumieu type, Results Math. 29 (1996), 254-275. | Zbl 0859.35019

[00026] [27] M. Langenbruch, Continuation of Gevrey regularity for solutions of partial differential operators, in: S. Dierolf, S. Dineen and P. Domański (eds.), Functional Analysis, Proc. First Workshop at Trier University, de Gruyter, 1996, 249-280. | Zbl 0886.35031

[00027] [28] M. Langenbruch, Surjective partial differential operators on Gevrey classes and their localizations at infinity, Linear Topol. Spaces Complex Anal. 3 (1997), 95-111,

[00028] [29] M. Langenbruch, Surjectivity of partial differential operators in Gevrey classes and extension of regularity, Math. Nachr. 196 (1998), 103-140. | Zbl 0933.35044

[00029] [30] M. Langenbruch, Extension of analyticity for solutions of partial differential operators, Note Mat. 17 (1997), 29-59. | Zbl 0976.35011

[00030] [31] M. Langenbruch, Surjective partial differential operators on spaces of real analytic functions, preprint.

[00031] [32] P. Laubin, Propagation des singularités analytiques pour des opérateurs à caractéristiques involutives de multiplicité variable, Portugal. Math. 41 (1982), 83-90. | Zbl 0551.58034

[00032] [33] P. Laubin, Analyse microlocale des singularités analytiques, Bull. Soc. Roy. Sci. Liège 52 (1983), 103-212. | Zbl 0567.58028

[00033] [34] O. Liess, Necessary and sufficient conditions for propagation of singularities for systems of partial differential equations with constant coefficients, Comm. Partial Differential Equations 8 (1983), 89-198. | Zbl 0524.35021

[00034] [35] R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, Braunschweig, 1992.

[00035] [36] T. Miwa, On the global existence of real analytic solutions of systems of linear differential equations with constant coefficients, Proc. Japan Acad. 49 (1973), 500-502. | Zbl 0273.35013

[00036] [37] L. C. Piccinini, Non surjectivity of the Cauchy-Riemann operator on the space of the analytic functions on n, Boll. Un. Mat. Ital. (4) 7 (1973), 12-28. | Zbl 0264.35003

[00037] [38] J. Sjöstrand, Singularités Analytiques Microlocales, Astérisque 95 (1982), 1-166. | Zbl 0524.35007

[00038] [39] G. Zampieri, Operatori differenziali a coefficienti costanti di tipo iperbolico-(ipo) ellittico, Rend. Sem. Mat. Univ. Padova 72 (1984), 27-44.

[00039] [40] G. Zampieri, Propagation of singularity and existence of real analytic solutions of locally hyperbolic equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), 373-390. | Zbl 0595.35077

[00040] [41] G. Zampieri, An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations, Boll. Un. Mat. Ital. B (6) 5 (1986), 361-392. | Zbl 0624.35011