Subspaces of the Bourgain-Delbaen space
Haydon, Richard
Studia Mathematica, Tome 141 (2000), p. 275-293 / Harvested from The Polish Digital Mathematics Library

It is shown that every infinite-dimensional closed subspace of the Bourgain-Delbaen space Xa,b has a subspace isomorphic to some p.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216723
@article{bwmeta1.element.bwnjournal-article-smv139i3p275bwm,
     author = {Richard Haydon},
     title = {Subspaces of the Bourgain-Delbaen space},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {275-293},
     zbl = {0967.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p275bwm}
}
Haydon, Richard. Subspaces of the Bourgain-Delbaen space. Studia Mathematica, Tome 141 (2000) pp. 275-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p275bwm/

[00000] [1] D. Alspach, The dual of the Bourgain-Delbaen space, preprint, Oklahoma State Univ., 1998.

[00001] [2] S. M. Bates, On smooth non-linear surjections of Banach spaces, Israel J. Math. 100 (1997), 209-220. | Zbl 0898.46044

[00002] [3] M. Boddington, On a certain class of recursively defined norms, in preparation.

[00003] [4] J. Bourgain, New Classes of p-Spaces, Lecture Notes in Math. 889, Springer, Berlin, 1981.

[00004] [5] J. Bourgain and F. Delbaen, A class of special -spaces, Acta Math. 145 (1980), 155-176. | Zbl 0466.46024

[00005] [6] G. Godefroy, N. J. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, preprint. | Zbl 0981.46007

[00006] [7] P. Hájek, Smooth functions on c0, Israel J. Math. 104 (1998), 17-28. | Zbl 0940.46023

[00007] [8] W. B. Johnson, A uniformly convex Banach space which contains no p, Compositio Math. 29 (1974), 179-190. | Zbl 0301.46013

[00008] [9] W. B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), 430-470. | Zbl 0864.46008

[00009] [10] B. Maurey, V. Milman and N. Tomczak-Jaegermann, Asymptotic infinite-dimensional theory of Banach spaces, in: Oper. Theory Adv. Appl. 77, Birkhäuser, Basel, 1995, 149-175. | Zbl 0872.46013