It is shown that every infinite-dimensional closed subspace of the Bourgain-Delbaen space has a subspace isomorphic to some .
@article{bwmeta1.element.bwnjournal-article-smv139i3p275bwm, author = {Richard Haydon}, title = {Subspaces of the Bourgain-Delbaen space}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {275-293}, zbl = {0967.46013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p275bwm} }
Haydon, Richard. Subspaces of the Bourgain-Delbaen space. Studia Mathematica, Tome 141 (2000) pp. 275-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p275bwm/
[00000] [1] D. Alspach, The dual of the Bourgain-Delbaen space, preprint, Oklahoma State Univ., 1998.
[00001] [2] S. M. Bates, On smooth non-linear surjections of Banach spaces, Israel J. Math. 100 (1997), 209-220. | Zbl 0898.46044
[00002] [3] M. Boddington, On a certain class of recursively defined norms, in preparation.
[00003] [4] J. Bourgain, New Classes of -Spaces, Lecture Notes in Math. 889, Springer, Berlin, 1981.
[00004] [5] J. Bourgain and F. Delbaen, A class of special -spaces, Acta Math. 145 (1980), 155-176. | Zbl 0466.46024
[00005] [6] G. Godefroy, N. J. Kalton and G. Lancien, Szlenk indices and uniform homeomorphisms, preprint. | Zbl 0981.46007
[00006] [7] P. Hájek, Smooth functions on , Israel J. Math. 104 (1998), 17-28. | Zbl 0940.46023
[00007] [8] W. B. Johnson, A uniformly convex Banach space which contains no , Compositio Math. 29 (1974), 179-190. | Zbl 0301.46013
[00008] [9] W. B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), 430-470. | Zbl 0864.46008
[00009] [10] B. Maurey, V. Milman and N. Tomczak-Jaegermann, Asymptotic infinite-dimensional theory of Banach spaces, in: Oper. Theory Adv. Appl. 77, Birkhäuser, Basel, 1995, 149-175. | Zbl 0872.46013