A geometrical solution of a problem on wavelets
Ayaghe, Antoine
Studia Mathematica, Tome 141 (2000), p. 261-273 / Harvested from The Polish Digital Mathematics Library

We prove the existence of nonseparable, orthonormal, compactly supported wavelet bases for L2(2) of arbitrarily high regularity by using some basic techniques of algebraic and differential geometry. We even obtain a much stronger result: “most” of the orthonormal compactly supported wavelet bases for L2(2), of any regularity, are nonseparable

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216722
@article{bwmeta1.element.bwnjournal-article-smv139i3p261bwm,
     author = {Antoine Ayaghe},
     title = {A geometrical solution of a problem on wavelets},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {261-273},
     zbl = {0964.42010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p261bwm}
}
Ayaghe, Antoine. A geometrical solution of a problem on wavelets. Studia Mathematica, Tome 141 (2000) pp. 261-273. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p261bwm/

[00000] [AK] S. Akbulut and H. King, Topology of Real Algebraic Sets, Math. Sci. Res. Inst. Publ. 25, Springer, 1992. | Zbl 0808.14045

[00001] [A1] A. Ayache, Construction of non-separable dyadic compactly supported orthonormal wavelet bases for L2(2) of arbitrarily high regularity, Rev. Mat. Iberoamericana 15 (1999), 37-58. | Zbl 0923.42021

[00002] [A2] A. Ayache, Bases multivariées d'ondelettes, orthonormales, non séparables, à support compact et de régularité arbitraire, Phd Thesis, Ceremade, Univ. Paris Dauphine, 1997.

[00003] [BW] E. Belogay and Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in 2, SIAM J. Math. Anal. 30 (1999), 678-697. | Zbl 0946.42025

[00004] [CHM] C. Cabrelli, C. Heil and U. Molter, Self-similarity and multiwavelets in higher dimensions, preprint, 1999.

[00005] [C] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroir en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459. | Zbl 0736.42021

[00006] [CGV] A. Cohen, K. Gröchenig and L. F. Villemoes, Regularity of multivariate refinable functions, preprint. | Zbl 0937.42017

[00007] [D] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. | Zbl 0644.42026

[00008] [J] R. Q. Jia, Characterization of smoothness of multivariate refinable functions in sobolev spaces, preprint. | Zbl 1052.42029

[00009] [KLe] J. P. Kahane and P. G. Lemarié-Rieusset, Fourier Series and Wavelets, Gordon and Breach, 1995.

[00010] [L] W. M. Lawton, Tight frames of compactly supported affine wavelets, J. Math. Phys. 31 (1990), 1898-1901. | Zbl 0708.46020

[00011] [LR] W. M. Lawton and H. L. Resnikoff, Multidimensional wavelet bases, preprint, 1991.

[00012] [M] Y. Meyer, Ondelettes et opérateurs, Hermann, 1990. | Zbl 0694.41037

[00013] [RW] H. L. Resnikoff and R. O. Wells Jr., Wavelet Analysis: The Scalable Structure of Information, Springer, 1998.

[00014] [W] R. O. Wells Jr., Parametrizing smooth compactly supported wavelets, Trans. Amer. Math. Soc. 338 (1993), 919-931. | Zbl 0777.41029