We prove the existence of nonseparable, orthonormal, compactly supported wavelet bases for of arbitrarily high regularity by using some basic techniques of algebraic and differential geometry. We even obtain a much stronger result: “most” of the orthonormal compactly supported wavelet bases for , of any regularity, are nonseparable
@article{bwmeta1.element.bwnjournal-article-smv139i3p261bwm, author = {Antoine Ayaghe}, title = {A geometrical solution of a problem on wavelets}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {261-273}, zbl = {0964.42010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p261bwm} }
Ayaghe, Antoine. A geometrical solution of a problem on wavelets. Studia Mathematica, Tome 141 (2000) pp. 261-273. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p261bwm/
[00000] [AK] S. Akbulut and H. King, Topology of Real Algebraic Sets, Math. Sci. Res. Inst. Publ. 25, Springer, 1992. | Zbl 0808.14045
[00001] [A1] A. Ayache, Construction of non-separable dyadic compactly supported orthonormal wavelet bases for of arbitrarily high regularity, Rev. Mat. Iberoamericana 15 (1999), 37-58. | Zbl 0923.42021
[00002] [A2] A. Ayache, Bases multivariées d'ondelettes, orthonormales, non séparables, à support compact et de régularité arbitraire, Phd Thesis, Ceremade, Univ. Paris Dauphine, 1997.
[00003] [BW] E. Belogay and Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in , SIAM J. Math. Anal. 30 (1999), 678-697. | Zbl 0946.42025
[00004] [CHM] C. Cabrelli, C. Heil and U. Molter, Self-similarity and multiwavelets in higher dimensions, preprint, 1999.
[00005] [C] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroir en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459. | Zbl 0736.42021
[00006] [CGV] A. Cohen, K. Gröchenig and L. F. Villemoes, Regularity of multivariate refinable functions, preprint. | Zbl 0937.42017
[00007] [D] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. | Zbl 0644.42026
[00008] [J] R. Q. Jia, Characterization of smoothness of multivariate refinable functions in sobolev spaces, preprint. | Zbl 1052.42029
[00009] [KLe] J. P. Kahane and P. G. Lemarié-Rieusset, Fourier Series and Wavelets, Gordon and Breach, 1995.
[00010] [L] W. M. Lawton, Tight frames of compactly supported affine wavelets, J. Math. Phys. 31 (1990), 1898-1901. | Zbl 0708.46020
[00011] [LR] W. M. Lawton and H. L. Resnikoff, Multidimensional wavelet bases, preprint, 1991.
[00012] [M] Y. Meyer, Ondelettes et opérateurs, Hermann, 1990. | Zbl 0694.41037
[00013] [RW] H. L. Resnikoff and R. O. Wells Jr., Wavelet Analysis: The Scalable Structure of Information, Springer, 1998.
[00014] [W] R. O. Wells Jr., Parametrizing smooth compactly supported wavelets, Trans. Amer. Math. Soc. 338 (1993), 919-931. | Zbl 0777.41029