Let ,B and Qβ be the weighted Nevanlinna space, the Bloch space and the Q space, respectively. Note that B and are Möbius invariant, but is not. We characterize, in function-theoretic terms, when the composition operator induced by an analytic self-map ϕ of the unit disk defines an operator , , which is bounded resp. compact.
@article{bwmeta1.element.bwnjournal-article-smv139i3p245bwm, author = {Jie Xiao}, title = {Composition operators: $N\_$\alpha$$ to the Bloch space to $Q\_$\beta$$ }, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {245-260}, zbl = {0963.30021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p245bwm} }
Xiao, Jie. Composition operators: $N_α$ to the Bloch space to $Q_β$ . Studia Mathematica, Tome 141 (2000) pp. 245-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p245bwm/
[00000] [AS] A. Aleman and A. G. Siskakis, An integral operator on , Complex Variables 28 (1995), 149-158.
[00001] [AL] R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, in: Complex Analysis and its Applications, Pitman Res. Notes in Math. 305, Longman, 1994, 136-146. | Zbl 0826.30027
[00002] [ANZ] R. Aulaskari, M. Norwak and R. Zhao, The n-the derivative characterizations of Möbius invariant Dirichlet spaces, Bull. Austral. Math. Soc. 58 (1998), 43-56.
[00003] [ASX] R. Aulaskari, D. Stegenga and J. Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), 485-506. | Zbl 0861.30033
[00004] [AXZ] R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subclasses of BMOA and UBC, Analysis 15 (1995), 101-121. | Zbl 0835.30027
[00005] [Ba] A. Baernstein II, Analytic functions of bounded mean oscillation, in: Aspects of Contemporary Complex Analysis, Academic Press, London, 1980, 2-26.
[00006] [BCM] P. S. Bourdon, J. A. Cima and A. L. Matheson, Compact composition operators on BMOA, Trans. Amer. Math. Soc. 351 (1999), 2183-2196.
[00007] [EX] M. Essén and J. Xiao, Some results on spaces, 0 < p < 1, J. Reine Angew. Math. 485 (1997), 173-195.
[00008] [J] H. Jarchow, Locally Convex Spaces, Teubner, 1981. | Zbl 0466.46001
[00009] [JX] H. Jarchow and J. Xiao, Composition operators between Nevanlinna classes and Bergman spaces with weights, J. Operator Theory, to appear. | Zbl 0996.47031
[00010] [L] D. H. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), 345-368. | Zbl 0618.47018
[00011] [MM] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), 2679-2687. | Zbl 0826.47023
[00012] [NX] A. Nicolau and J. Xiao, Bounded functions in Möbius invariant Dirichlet spaces, J. Funct. Anal. 150 (1997), 383-425. | Zbl 0886.30036
[00013] [RU] W. Ramey and D. Ullrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann. 291 (1991), 591-606. | Zbl 0727.32002
[00014] [SS] J. H. Shapiro and A. L. Shields, Unusual topological properties of the Nevanlinna Class, Amer. J. Math. 97 (1976), 915-936. | Zbl 0323.30033
[00015] [ST] J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on , Indiana Univ. Math. J. 23 (1973), 471-496.
[00016] [SZ] W. Smith and R. Zhao, Composition operators mapping into the spaces, Analysis 17 (1997), 239-263. | Zbl 0901.47023
[00017] [Str] K. Stroethoff, Nevanlinna-type characterizations for the Bloch space and related spaces, Proc. Edinburgh Math. Soc. 33 (1990), 123-142. | Zbl 0703.30032
[00018] [T] M. Tjani, Compact composition operators on some Möbius invariant Banach spaces, Ph.D. Thesis, Michigan State Univ. 1996. | Zbl 0963.47023
[00019] [X1] J. Xiao, Carleson measure, atomic decomposition and free interpolation from Bloch space, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 19 (1994), 35-44. | Zbl 0816.30025
[00020] [X2] J. Xiao, Compact composition operators on the area-Nevanlinna class, Exposition. Math. 17 (1999), 255-264. | Zbl 0977.30031
[00021] [Z] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990. | Zbl 0706.47019