Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields
Morbidelli, Daniele
Studia Mathematica, Tome 141 (2000), p. 213-244 / Harvested from The Polish Digital Mathematics Library

We study the notion of fractional Lp-differentiability of order s(0,1) along vector fields satisfying the Hörmander condition on n. We prove a modified version of the celebrated structure theorem for the Carnot-Carathéodory balls originally due to Nagel, Stein and Wainger. This result enables us to demonstrate that different Ws,p-norms are equivalent. We also prove a local embedding W1,pWs,q, where q is a suitable exponent greater than p.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216720
@article{bwmeta1.element.bwnjournal-article-smv139i3p213bwm,
     author = {Daniele Morbidelli},
     title = {Fractional Sobolev norms and structure of Carnot-Carath\'eodory balls for H\"ormander vector fields},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {213-244},
     zbl = {0981.46034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p213bwm}
}
Morbidelli, Daniele. Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields. Studia Mathematica, Tome 141 (2000) pp. 213-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv139i3p213bwm/

[00000] [1] D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), 1033-1074.

[00001] [2] G. Ben Arous and M. Gradinaru, Singularities of hypoelliptic Green functions, Potential Anal. 8 (1998), 217-258. | Zbl 0909.60058

[00002] [3] S. Berhanu and I. Pesenson, The trace problem for vector fields satisfying Hörmander's condition, Math. Z. 231 (1999), 103-122. | Zbl 0924.46026

[00003] [4] M. Biroli and U. Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal. 4 (1995), 311-324. | Zbl 0833.46020

[00004] [5] B J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 277-304. | Zbl 0176.09703

[00005] [6] S. Buckley, P. Koskela and G. Lu, Subelliptic Poincaré estimates: the case p < 1, Publ. Math. 39 (1995), 313-334.

[00006] [7] L. Capogna, D. Danielli and N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (1993), 1765-1794. | Zbl 0802.35024

[00007] [8] L. Capogna, D. Danielli and N. Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 2 (1994), 203-215. | Zbl 0864.46018

[00008] [9] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147-154. | Zbl 0893.35023

[00009] [10] L. Capogna, D. Danielli and N. Garofalo, Capacitary estimates and the local behavior of solutions to nonlinear subelliptic equations, Amer. J. Math. 118 (1996), 1153-1196. | Zbl 0878.35020

[00010] [11] J. Y. Chemin et C. J. Xu, Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques, Ann. Sci. École Norm. Sup. (4) 30 (1997), 719-751. | Zbl 0892.35161

[00011] [12] V. M. Chernikov and S. K. Vodop'yanov, Sobolev spaces and hypoelliptic equations I, II, Siberian Adv. Math. 6 (1996), no. 3, 27-67, and no. 4, 64-96.

[00012] [13] C W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1940), 98-105. | Zbl 65.0398.01

[00013] [14] G. Citti and G. Di Fazio, Hölder continuity of the solutions for operators which are sum of squares of vector fields plus a potential, Proc. Amer. Math. Soc. 122 (1994), 741-750. | Zbl 0809.35013

[00014] [15] G. Citti, N. Garofalo and E. Lanconelli, Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math. 115 (1993), 699-734. | Zbl 0795.35018

[00015] [16] D D. Danielli, A compact embedding theorem for a class of degenerate Sobolev spaces, Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), 339-420. | Zbl 0789.46026

[00016] [17] C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, in: Proc. Conf. on Harmonic Analysis in honor of Antoni Zygmund, Wadsworth, Belmont, CA, 1983, 590-606.

[00017] [18] C. Fefferman and A. Sánchez-Calle, Fundamental solution for second order subelliptic operators, Ann. of Math. 124 (1986), 247-272.

[00018] [19] F G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | Zbl 0312.35026

[00019] [20] B. Franchi, S. Gallot and R. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557-571. | Zbl 0830.46027

[00020] [21] B. Franchi et E. Lanconelli, Une métrique associée à une classe d'opérateurs elliptiques dégénérés, in: Conference on Linear Partial and Pseudodifferential Operators, Rend. Sem. Mat. Univ. Politec. Torino (1983) (special issue), 105-114. | Zbl 0553.35033

[00021] [22] B. Franchi et E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541. | Zbl 0552.35032

[00022] [23] B. Franchi et E. Lanconelli, An embedding theorem for Sobolev spaces related to non-smooth vector fields and Harnack inequality, Comm. Partial Differential Equations 9 (1984), 1237-1264. | Zbl 0589.46023

[00023] [24] B. Franchi, G. Lu and R. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604. | Zbl 0820.46026

[00024] [25] B. Franchi, G. Lu and R. Wheeden, A relationship between Poincaré type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices 1996, no. 1, 1-14. | Zbl 0856.43006

[00025] [26] B. Franchi, R. Serapioni and F. Serra Cassano, Approximation and embedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7) 11 (1997), 83-117. | Zbl 0952.49010

[00026] [27] N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144. | Zbl 0880.35032

[00027] [28] N. Garofalo and D. M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math. 74 (1998), 67-97. | Zbl 0906.46026

[00028] [29] P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris 320 (1995), 1211-1215. | Zbl 0837.46024

[00029] [30] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. (to appear). | Zbl 0954.46022

[00030] [31] P. Hajłasz and P. Strzelecki, Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces, Math. Ann. 312 (1998), 341-362. | Zbl 0914.35029

[00031] [32] G. Hochschild, La structure des groupes de Lie, Dunod, Paris, 1968.

[00032] [33] H L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. | Zbl 0156.10701

[00033] [34] L. Hörmander and A. Melin, Free systems of vector fields, Ark. Mat. 16 (1978), 83-88. | Zbl 0383.35013

[00034] [35] J D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523. | Zbl 0614.35066

[00035] [36] D. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), 835-854.

[00036] [37] D. Jerison and A. Sánchez-Calle, Subelliptic second order differential operators, in: Lecture Notes in Math. 1277, Springer, 1987, 46-77.

[00037] [38] K N. V. Krylov, Hölder continuity and Lp estimates for elliptic equations under general Hörmander’s condition, Topol. Methods Nonlinear Anal. 9 (1997), 249-258. | Zbl 0892.35066

[00038] [39] S. Kusuoka and D. W. Strook, Applications of the Malliavin calculus, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 34 (1987), 392-442.

[00039] [40] S. Kusuoka and D. W. Strook, Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. of Math. 127 (1988), 165-189. | Zbl 0699.35025

[00040] [41] E. Lanconelli, Stime subellittiche e metriche Riemanniane singolari, Seminario di Analisi Matematica, Dipartimento di Matematica, Università di Bologna, A. A. 1982-83.

[00041] [42] E. Lanconelli and D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat. (to appear). | Zbl 1131.46304

[00042] [43] G. Lu, Existence and size estimates for the Green's functions of differential operators constructed from degenerate vector fields, Comm. Partial Differential Equations 17 (1992), 1213-1251. | Zbl 0798.35002

[00043] [44] G. Lu, Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations, Publ. Math. 40 (1996), 301-329. | Zbl 0873.35006

[00044] [45] G. Lu, A note on a Poincaré type inequality for solutions to subelliptic equations, Comm. Partial Differential Equations 21 (1996), 235-254. | Zbl 0847.35044

[00045] [46] P. Maheux et L. Saloff-Coste, Analyse sur les boules d'un opérateur sous-elliptique, Math. Ann. 303 (1995), 713-746.

[00046] [47] A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985), 103-147. | Zbl 0578.32044

[00047] [48] R W. C. Rheinboldt, Local mapping relations and global implicit function theorems, Trans. Amer. Math. Soc. 138 (1969), 183-198. | Zbl 0175.45201

[00048] [49] L. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320. | Zbl 0346.35030

[00049] [50] S K. Saka, Besov spaces and Sobolev spaces on a nilpotent Lie group, Tôhoku Math. J. 31 (1979), 383-437. | Zbl 0429.43004

[00050] [51] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 1992, no. 2, 27-38. | Zbl 0769.58054

[00051] [52] A. Sánchez-Calle, Fundamental solutions and geometry of sum of squares of vector fields, Invent. Math. 78 (1984), 143-160.

[00052] [53] J.-P. Serre, Lie Algebras and Lie Groups, Lecture Notes in Math. 1500, Springer, 1992.

[00053] [54] T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Univ. Press, 1992. | Zbl 0813.22003

[00054] [55] S. K. Vodop'yanov and I. G. Markina, Exceptional sets for solutions of subelliptic equations, Siberian Math. J. 36 (1995), 694-706.

[00055] [56] X C. J. Xu, Regularity for quasi linear second order subelliptic equations, Comm. Pure Appl. Math. 45 (1992), 77-96. | Zbl 0827.35023