Elements of C*-algebras commuting with their Moore-Penrose inverse
Koliha, J.
Studia Mathematica, Tome 141 (2000), p. 81-90 / Harvested from The Polish Digital Mathematics Library

We give new necessary and sufficient conditions for an element of a C*-algebra to commute with its Moore-Penrose inverse. We then study conditions which ensure that this property is preserved under multiplication. As a special case of our results we recover a recent theorem of Hartwig and Katz on EP matrices.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216712
@article{bwmeta1.element.bwnjournal-article-smv139i1p81bwm,
     author = {J. Koliha},
     title = {Elements of C*-algebras commuting with their Moore-Penrose inverse},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {81-90},
     zbl = {0963.46037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv139i1p81bwm}
}
Koliha, J. Elements of C*-algebras commuting with their Moore-Penrose inverse. Studia Mathematica, Tome 141 (2000) pp. 81-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv139i1p81bwm/

[00000] [1] T. S. Baskett and I. J. Katz, Theorems on products of EPr matrices, Linear Algebra Appl. 2 (1969), 87-103. | Zbl 0179.05104

[00001] [2] K. G. Brock, A note on commutativity of a linear operator and its Moore-Penrose inverse, Numer. Funct. Anal. Optim. 11 (1990), 673-678. | Zbl 0729.47001

[00002] [3] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979. | Zbl 0417.15002

[00003] [4] M. P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514. | Zbl 0083.02901

[00004] [5] R. E. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77. | Zbl 0810.46062

[00005] [6] R. E. Harte and M. Mbekhta, Generalized inverses in C*-algebras II, ibid. 106 (1993), 129-138. | Zbl 0810.46063

[00006] [7] R. Hartwig and I. J. Katz, On products of EP matrics, Linear Algebra Appl. 252 (1997), 339-345. | Zbl 0868.15015

[00007] [8] I. J. Katz, Weigman type theorems for EPr matrices, Duke Math. J. 32 (1965), 423-428.

[00008] [9] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381. | Zbl 0897.47002

[00009] [10] J. J. Koliha, The Drazin and Moore-Penrose inverse in C*-algebras, Proc. Roy. Irish Acad. Sect. A 99 (1999), 17-27. | Zbl 0943.46031

[00010] [11] J. J. Koliha, A simple proof of the product theorem for EP matrices, Linear Algebra Appl. 294 (1999), 213-215. | Zbl 0938.15017

[00011] [12] I. Marek and K. Žitný, Matrix Analysis for Applied Sciences, Vol. 2, Teubner, Leipzig, 1986. | Zbl 0613.15002

[00012] [13] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413. | Zbl 0065.24603

[00013] [14] E. T. Wong, Does the generalized inverse of A commute with A?, Math. Mag. 59 (1986), 230-232. | Zbl 0611.15007

[00014] [15] D. Djordjević, Products of EP operators on Hilbert spaces, Proc. Amer. Math. Soc., to appear.

[00015] [16] G. Lešnjak, Semigroups of EP linear transformations, Linear Algebra Appl. 304 (2000), 109-118. | Zbl 0946.15009