Let T be a precompact subset of a Hilbert space. We estimate the metric entropy of co(T), the convex hull of T, by quantities originating in the theory of majorizing measures. In a similar way, estimates of the Gelfand width are provided. As an application we get upper bounds for the entropy of co(T), , , by functions of the ’s only. This partially answers a question raised by K. Ball and A. Pajor (cf. [1]). Our estimates turn out to be optimal in the case of slowly decreasing sequences .
@article{bwmeta1.element.bwnjournal-article-smv139i1p29bwm, author = {Wenbo Li and Werner Linde}, title = {Metric entropy of convex hulls in Hilbert spaces}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {29-45}, zbl = {0977.60051}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv139i1p29bwm} }
Li, Wenbo; Linde, Werner. Metric entropy of convex hulls in Hilbert spaces. Studia Mathematica, Tome 141 (2000) pp. 29-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv139i1p29bwm/
[00000] [1] K. Ball and A. Pajor, The entropy of convex bodies with "few" extreme points, in: London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 25-32. | Zbl 0746.60005
[00001] [2] B. Bühler, W. V. Li and W. Linde, Localization of majorizing measures, in: Asymptotic Methods in Probability and Statistics with Applications, Birkhäuser, to appear. | Zbl 1021.60030
[00002] [3] B. Carl, Entropy numbers, s-numbers, and eigenvalue problems, J. Funct. Anal. 41 (1981), 290-306. | Zbl 0466.41008
[00003] [4] B. Carl, Metric entropy of convex hulls in Hilbert spaces, Bull. London Math. Soc. 29 (1997), 452-458. | Zbl 0879.41012
[00004] [5] B. Carl and D. E. Edmunds, Entropy of C(X)-valued operators and diverse applications, preprint, 1998. | Zbl 1031.41013
[00005] [6] B. Carl, I. Kyrezi and A. Pajor, Metric entropy of convex hulls in Banach spaces, J. London Math. Soc., to appear. | Zbl 0976.46009
[00006] [7] B. Carl and I. Stephani, Entropy, Compactness and Approximation of Operators, Cambridge Univ. Press, Cambridge, 1990.
[00007] [8] R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1 (1967), 290-330. | Zbl 0188.20502
[00008] [9] R. M. Dudley, Universal Donsker classes and metric entropy, Ann. Probab. 15 (1987), 1306-1326. | Zbl 0631.60004
[00009] [10] X. Fernique, Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens, Les Publications CRM, Montréal, 1997.
[00010] [11] A. Garnaev and E. Gluskin, On diameters of the Euclidean ball, Dokl. Akad. Nauk SSSR 277 (1984), 1048-1052 (in Russian). | Zbl 0588.41022
[00011] [12] M. Ledoux, Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory and Statistics, Lecture Notes in Math. 1648, Springer, 1996, 165-294.
[00012] [13] M. Ledoux and M. Talagrand, Probability in a Banach Space, Springer, 1991. | Zbl 0748.60004
[00013] [14] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univ. Press, Cambridge, 1989. | Zbl 0698.46008
[00014] [15] S C. Schütt, Entropy numbers of diagonal operators between symmetric Banach spaces, J. Approx. Theory 40 (1984), 121-128. | Zbl 0497.41017
[00015] [16] I. Steinwart, Entropy of C(K)-valued operators, J. Approx. Theory, to appear. | Zbl 0957.47021
[00016] [17] M. Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), 99-149. | Zbl 0712.60044
[00017] [18] M. Talagrand, Majorizing measures: The generic chaining, Ann. Probab. 24 (1996), 1049-1103. | Zbl 0867.60017