An example of a Fréchet algebra which is a principal ideal domain
Carboni, Graciela ; Larotonda, Angel
Studia Mathematica, Tome 141 (2000), p. 265-275 / Harvested from The Polish Digital Mathematics Library

We construct an example of a Fréchet m-convex algebra which is a principal ideal domain, and has the unit disk as the maximal ideal space.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216704
@article{bwmeta1.element.bwnjournal-article-smv138i3p265bwm,
     author = {Graciela Carboni and Angel Larotonda},
     title = {An example of a Fr\'echet algebra which is a principal ideal domain},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {265-275},
     zbl = {0969.46041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv138i3p265bwm}
}
Carboni, Graciela; Larotonda, Angel. An example of a Fréchet algebra which is a principal ideal domain. Studia Mathematica, Tome 141 (2000) pp. 265-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv138i3p265bwm/

[00000] [1] R. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182. | Zbl 0087.31802

[00001] [2] R. Arens, Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947), 623-630. | Zbl 0031.25103

[00002] [3] H. Arizmendi, On the spectral radius of a matrix algebra, Funct. Approx. Comment. Math. 19 (1990), 167-176. | Zbl 0731.46027

[00003] [4] S. Bouloussa, Caractérisation des algèbres de Fréchet qui sont des anneaux de valuation, J. London Math. Soc. (2) 25 (1982), 355-364. | Zbl 0576.46042

[00004] [5] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183. | Zbl 0391.46037

[00005] [6] A. Ferreira and G. Tomassini, Finiteness properties of topological algebras, Ann. Scuola Norm. Sup. Pisa 3 (1978), 471-488. | Zbl 0397.46045

[00006] [7] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968.

[00007] [8] H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366-383. | Zbl 0168.10603

[00008] [9] W. Roberts and D. Vanberg, Convex Functions, Academic Press, New York, 1973.

[00009] [10] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1964.

[00010] [11] A. Sinclair and A. Tullo, Noetherian Banach algebras are finite dimensional, Math. Ann. 211 (1974), 151-153. | Zbl 0275.46037

[00011] [12] G. Tomassini, On some finiteness properties of topological algebras, Symposia Math. 11 (1973), 305-311.

[00012] [13] W. Żelazko, A theorem on B0 division algebras, Bull. Acad. Polon. Sci. 8 (1960), 373-375. | Zbl 0095.31303

[00013] [14] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1977. | Zbl 0367.42001