Topological classification of strong duals to nuclear (LF)-spaces
Banakh, Taras
Studia Mathematica, Tome 141 (2000), p. 201-208 / Harvested from The Polish Digital Mathematics Library

We show that the strong dual X’ to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: ω, , Q×, ω×, or ()ω, where =limn and Q=[-1,1]ω. In particular, the Schwartz space D’ of distributions is homeomorphic to ()ω. As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to Q×. In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either to or to Q×.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216699
@article{bwmeta1.element.bwnjournal-article-smv138i3p201bwm,
     author = {Taras Banakh},
     title = {Topological classification of strong duals to nuclear (LF)-spaces},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {201-208},
     zbl = {0952.57006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv138i3p201bwm}
}
Banakh, Taras. Topological classification of strong duals to nuclear (LF)-spaces. Studia Mathematica, Tome 141 (2000) pp. 201-208. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv138i3p201bwm/

[00000] [An] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-389.

[00001] [Ba] T. Banakh, On linear topological spaces (linearly) homeomorphic to , Mat. Stud. 9 (1998), 99-101. | Zbl 0932.46002

[00002] [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. | Zbl 0304.57001

[00003] [Ch] T. A. Chapman, Lectures on Hilbert Cube Manifolds, CBMS Regional Conf. Ser. in Math. 28, Amer. Math. Soc., 1976.

[00004] [Di] J. Dieudonné, Sur les espaces de Montel métrisables, C. R. Acad. Sci. Paris 238 (1954), 194-195. | Zbl 0055.09801

[00005] [En] R. Engelking, General Topology, PWN, Warszawa, 1977.

[00006] [Ke] O. M. Keller, Die homoimorphie der kompakten konvexen Mengen in Hilbertschen Raum, Math. Ann. 105 (1931), 748-758. | Zbl 57.1523.01

[00007] [Ma] P. Mankiewicz, On topological, Lipschitz, and uniform classification of LF-spaces, Studia Math. 52 (1974), 109-142. | Zbl 0328.46005

[00008] [Sa] K. Sakai, On -manifolds and Q-manifolds, Topology Appl. 18 (1984), 69-79.

[00009] [Sch] H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.