We prove that the separating space of a Lie homomorphism from a Banach algebra onto a Banach algebra is contained in the centre modulo the radical.
@article{bwmeta1.element.bwnjournal-article-smv138i2p193bwm, author = {Bernard Aupetit and Martin Mathieu}, title = {The continuity of Lie homomorphisms}, journal = {Studia Mathematica}, volume = {141}, year = {2000}, pages = {193-199}, zbl = {0962.46038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv138i2p193bwm} }
Aupetit, Bernard; Mathieu, Martin. The continuity of Lie homomorphisms. Studia Mathematica, Tome 141 (2000) pp. 193-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv138i2p193bwm/
[00000] [1] B. Aupetit, The uniqueness of the complete norm topology in Banach algebras and Banach Jordan algebras, J. Funct. Anal. 47 (1982), 1-6. | Zbl 0488.46043
[00001] [2] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
[00002] [3] K. I. Beidar, W. S. Martindale and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, New York, 1996. | Zbl 0847.16001
[00003] [4] M. I. Berenguer and A. R. Villena, Continuity of Lie isomorphisms of Banach algebras, Bull. London Math. Soc. 31 (1999), 6-10. | Zbl 1068.46500
[00004] [5] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. | Zbl 0271.46039
[00005] [6] M. Brešar, Derivations decreasing the spectral radius, Arch. Math. (Basel) 61 (1993), 160-162. | Zbl 0818.46049
[00006] [7] M. Brešar and M. Mathieu, Derivations mapping into the radical, III, J. Funct. Anal. 133 (1995), 21-29. | Zbl 0897.46045
[00007] [8] M. Brešar and P. Šemrl, Spectral characterization of central elements in Banach algebras, Studia Math. 120 (1996), 47-52.
[00008] [9] R. E. Curto and M. Mathieu, Spectrally bounded generalized inner derivations, Proc. Amer. Math. Soc. 123 (1995), 2431-2434. | Zbl 0822.47034
[00009] [10] H. G. Dales, On norms of algebras, in: Proc. Centre Math. Anal. Austral. Nat. Univ. 21, Canberra, 1989, 61-96.
[00010] [11] M. Mathieu, Where to find the image of a derivation, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 237-249. | Zbl 0813.47043
[00011] [12] M. Mathieu, Lie mappings of C*-algebras, in: Nonassociative Algebra and Its Applications, R. Costa et al. (eds.), Marcel Dekker, New York, in press.
[00012] [13] V. Pták, Derivations, commutators and the radical, Manuscripta Math. 23 (1978), 355-362. | Zbl 0376.46031
[00013] [14] A. Rodríguez Palacios, The uniqueness of the complete norm topology in complete normed nonassociative algebras, J. Funct. Anal. 60 (1985), 1-15. | Zbl 0602.46055
[00014] [15] P. Šemrl, Spectrally bounded linear maps on B(H), Quart. J. Math. Oxford (2) 49 (1998), 87-92. | Zbl 0958.47016