Absolutely continuous dynamics and real coboundary cocycles in Lp-spaces, 0 < p < ∞
Alonso, Ana ; Hong, Jialin ; Obaya, Rafael
Studia Mathematica, Tome 141 (2000), p. 121-134 / Harvested from The Polish Digital Mathematics Library

Conditions for the existence of measurable and integrable solutions of the cohomology equation on a measure space are deduced. They follow from the study of the ergodic structure corresponding to some families of bidimensional linear difference equations. Results valid for the non-measure-preserving case are also obtained

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216694
@article{bwmeta1.element.bwnjournal-article-smv138i2p121bwm,
     author = {Ana Alonso and Jialin Hong and Rafael Obaya},
     title = {Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 < p < $\infty$},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {121-134},
     zbl = {0951.28010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv138i2p121bwm}
}
Alonso, Ana; Hong, Jialin; Obaya, Rafael. Absolutely continuous dynamics and real coboundary cocycles in $L^p$-spaces, 0 < p < ∞. Studia Mathematica, Tome 141 (2000) pp. 121-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv138i2p121bwm/

[00000] [1] A. I. Alonso and R. Obaya, Dynamical description of bidimensional linear systems with a measurable 2-sheet, J. Math. Anal. Appl.212, 154-175 (1997). | Zbl 0886.58053

[00001] [2] I. Assani, Note on the equation y = (I-T)x, preprint, 1997.

[00002] [3] I. Assani and J. Woś, An equivalent measure for some nonsingular transformations and application, Studia Math. 97, 1-12 (1990). | Zbl 0718.28006

[00003] [4] R. C. Bradley, On a theorem of K. Schmidt, Statist. Probab. Lett. 24, 9-12 (1995).

[00004] [5] F. E. Browder, On the iteration of transformations in non-compact minimal dynamical systems, Proc. Amer. Math. Soc. 9, 773-780 (1958). | Zbl 0092.12602

[00005] [6] H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83, 573-601 (1961). | Zbl 0178.38404

[00006] [7] W. Gottschalk and G. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ. 36, Providence, RI, 1955. | Zbl 0067.15204

[00007] [8] U. Krengel and M. Lin, On the range of the generator of a markovian semigroup, Math. Z. 185, 553-565 (1984). | Zbl 0525.60080

[00008] [9] V. P. Leonov, On the dispersion of the time averages of a stationary stochastic process, Teor. Veroyatnost. i Primenen. 6 (1961), 93-101 (in Russian); English transl. in Theory Probab. Appl. 6 (1961).

[00009] [10] M. Lin and R. Sine, Ergodic theory and the functional equation (I-T)x= y , J. Operator Theory 10, 153-166 (1983). | Zbl 0553.47006

[00010] [11] F. J. Martín-Reyes and A. de la Torre, On the pointwise ergodic theorem, Studia Math. 108, 1-4 (1994). | Zbl 0861.28011

[00011] [12] S. Novo and R. Obaya, An ergodic classification of bidimensional linear systems, J. Dynam. Differential Equations 8, 373-406 (1996). | Zbl 0869.28009

[00012] [13] S. Novo and R. Obaya, An ergodic and topological approach to almost periodic bidimensional linear systems, in: Contemp. Math. 215, Amer. Math. Soc., 1998, 299-323. | Zbl 0896.58041

[00013] [14] R. Sato, Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations, Studia Math. 114, 227-236 (1995). | Zbl 0835.47006